Effective Connectivity in Cortical Networks During Deception: A Lie Detection Study Based on EEG

欺骗 脑电图 神经生理学 测谎 模式识别(心理学) 计算机科学 人工智能 连贯性(哲学赌博策略) 大脑活动与冥想 神经科学 心理学 语音识别 数学 统计 社会心理学
作者
Junfeng Gao,Xiangde Min,Qianruo Kang,Huifang Si,Huimiao Zhan,Anne Manyande,Xuebi Tian,Yinhong Dong,Hua Zheng,Jian Song
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3755-3766 被引量:8
标识
DOI:10.1109/jbhi.2022.3172994
摘要

Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助loong采纳,获得10
1秒前
John完成签到,获得积分10
5秒前
zmh完成签到,获得积分10
5秒前
lvxh完成签到,获得积分10
5秒前
sunflower完成签到,获得积分10
5秒前
研友_gnv61n完成签到,获得积分10
5秒前
默念完成签到,获得积分10
5秒前
缓慢的白梦完成签到 ,获得积分10
6秒前
大方笑阳发布了新的文献求助10
6秒前
6秒前
wgy完成签到,获得积分10
6秒前
野性的小懒虫完成签到 ,获得积分10
6秒前
野性的小懒虫完成签到 ,获得积分10
6秒前
6秒前
HibenAlger完成签到,获得积分10
6秒前
温梦花雨完成签到 ,获得积分10
7秒前
喜悦兔子完成签到 ,获得积分10
10秒前
荆轲刺秦王完成签到 ,获得积分10
11秒前
荆轲刺秦王完成签到 ,获得积分10
11秒前
努力搬砖毕业完成签到 ,获得积分10
11秒前
LXG666发布了新的文献求助10
12秒前
He完成签到,获得积分10
12秒前
12秒前
背后的小白菜完成签到,获得积分10
12秒前
仙啾啾完成签到,获得积分10
12秒前
沉静的采波完成签到 ,获得积分10
13秒前
安静成威完成签到 ,获得积分10
13秒前
千年雪松完成签到,获得积分10
18秒前
www完成签到,获得积分10
18秒前
腼腆的小熊猫完成签到 ,获得积分10
18秒前
Zero完成签到,获得积分10
18秒前
19秒前
salvage完成签到,获得积分20
19秒前
19秒前
英俊的铭应助朴素山兰采纳,获得10
19秒前
开放的白玉完成签到,获得积分10
19秒前
李爱国应助wdd采纳,获得10
19秒前
zhang完成签到,获得积分10
20秒前
24秒前
星星完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126580
求助须知:如何正确求助?哪些是违规求助? 2776835
关于积分的说明 7732664
捐赠科研通 2432258
什么是DOI,文献DOI怎么找? 1292509
科研通“疑难数据库(出版商)”最低求助积分说明 622895
版权声明 600465