NMOS逻辑
PMOS逻辑
CMOS芯片
环形振荡器
材料科学
光电子学
堆积
节点(物理)
电子工程
薄脆饼
频道(广播)
静态随机存取存储器
电气工程
工程类
晶体管
电压
物理
结构工程
核磁共振
作者
Yanna Luo,Qingzhu Zhang,Lei Cao,Weizhuo Gan,Haoqing Xu,Yu Cao,Jie Gu,Renren Xu,Gangping Yan,Jiali Huo,Zhenhua Wu,Huaxiang Yin
标识
DOI:10.1109/ted.2022.3176843
摘要
Complementary FET (CFET) is a promising candidate for CMOS scaling beyond 3-nm technology node. In this article, a novel hybrid channel CFET (HC-CFET) is proposed, which takes advantage of the vertical structure and simultaneously co-optimizes the preferred high-electron/hole-mobility surface of NMOS/PMOS on one substrate. The flexible combination of nanowires (NWs) and nanosheets (NSs) in the HC-CFET allows NMOS to have (100) channel surface orientation, while PMOS has (110) channel surface orientation without increasing the footprint of CFET pillars. Parasitic-aware device to circuit design-technology co-optimization (DTCO) analysis of the HC-CFET is performed based on advanced TCAD simulation of the device and comprehensive HSPICE simulation with TCAD-calibrated compact model. At the device level, the optimization of the channel surface orientation in the HC-CFET enables both NMOS and PMOS to obtain a current gain of more than 20%. By adjusting the wafer orientation and stacking type, HC-CFET exhibits higher frequency gain and comparable energy consumption in ring oscillator (RO) than multiscreen CFET (MS-CFET) and multibridge CFET (MB-CFET). After fully considering the impact of the stacking type on the static random access memory (SRAM) cell structure, (110) wafer together with n-NW on top of p-NS stack is the preferable approach to manufacture HC-CFET, which helps balance the speed, stability, and area of the SRAM cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI