Unsupervised Hyperspectral Band Selection via Hybrid Graph Convolutional Network

高光谱成像 判别式 模式识别(心理学) 计算机科学 冗余(工程) 人工智能 卷积神经网络 光谱带 特征提取 特征选择 降维 图形 上下文图像分类 遥感 图像(数学) 理论计算机科学 操作系统 地质学
作者
Chunyan Yu,Sijia Zhou,Meiping Song,Baoyu Gong,Enyu Zhao,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2022.3179513
摘要

Hyperspectral image (HSI) provided with a substantial number of correlated bands causes calculation consumption and an undesirable "dimension disaster" problem for the classification. Band selection (BS) is an effective measure to reduce the information redundancy with the physics spectrum preserved for HSI. Although the existing BS methods have achieved noticeable progress, the correlation between neighbor bands still needs to be mined deeply for an effective selection criterion. This paper proposes a BS approach to collecting the discriminative band subset for hyperspectral image classification (HSIC), which adopts the self-supervised learning paradigm to implement the BS by auxiliary spectrum rebuilding task. In specific, we utilized a Convolutional neural network (CNN) and Graph Convolutional Network (GCN) for the spectral-spatial feature extraction. Next, GCN and CNN are developed for the refinement of the band correlation sequentially. Afterward, the selected bands in terms of the acquired correlation are fed into the presented self-supervised spectrum rebuilding network for spectral reconstruction. Simultaneously, the proposed architecture completed the selection with the optimization of the band reconstruction by a defined loss function. In this way, we supply substitution for selection criterion and path searching through the end-to-end framework. The extensive experimental results and analysis demonstrated that the proposed hybrid architecture provided a competitive band subset for the classification, and the accuracies with different types of classifiers are more effective than the compared BS methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
I1waml完成签到 ,获得积分10
刚刚
bkagyin应助lkkk采纳,获得10
1秒前
yangyiyi完成签到,获得积分10
1秒前
1秒前
qqq完成签到,获得积分20
1秒前
栖浔完成签到 ,获得积分10
2秒前
飘逸亦寒完成签到 ,获得积分10
2秒前
第七个星球完成签到,获得积分10
2秒前
3秒前
深情安青应助马成双采纳,获得10
3秒前
李健应助圣诞结采纳,获得10
3秒前
3秒前
4秒前
田様应助坦率断秋采纳,获得10
4秒前
yk完成签到,获得积分10
4秒前
ZZ0110Z完成签到 ,获得积分10
5秒前
qqq发布了新的文献求助20
5秒前
hjhhjh完成签到,获得积分10
6秒前
6秒前
dcx完成签到,获得积分10
6秒前
BlueBlue完成签到,获得积分10
6秒前
球球爱科研完成签到,获得积分10
6秒前
zzzj完成签到 ,获得积分10
6秒前
一枚研究僧完成签到,获得积分0
6秒前
李周发布了新的文献求助10
6秒前
Zooey旎旎发布了新的文献求助10
7秒前
7秒前
李李完成签到,获得积分10
7秒前
8秒前
李天磊完成签到,获得积分10
8秒前
使徒猫发布了新的文献求助10
8秒前
天涯比邻星完成签到 ,获得积分20
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
风吹麦田应助科研通管家采纳,获得20
8秒前
唐唐应助科研通管家采纳,获得10
8秒前
8秒前
zgrmws应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659029
求助须知:如何正确求助?哪些是违规求助? 4825538
关于积分的说明 15084770
捐赠科研通 4817717
什么是DOI,文献DOI怎么找? 2578307
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491715