Unsupervised Hyperspectral Band Selection via Hybrid Graph Convolutional Network

高光谱成像 判别式 模式识别(心理学) 计算机科学 冗余(工程) 人工智能 卷积神经网络 光谱带 特征提取 特征选择 降维 图形 上下文图像分类 遥感 图像(数学) 理论计算机科学 操作系统 地质学
作者
Chunyan Yu,Sijia Zhou,Meiping Song,Baoyu Gong,Enyu Zhao,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2022.3179513
摘要

Hyperspectral image (HSI) provided with a substantial number of correlated bands causes calculation consumption and an undesirable "dimension disaster" problem for the classification. Band selection (BS) is an effective measure to reduce the information redundancy with the physics spectrum preserved for HSI. Although the existing BS methods have achieved noticeable progress, the correlation between neighbor bands still needs to be mined deeply for an effective selection criterion. This paper proposes a BS approach to collecting the discriminative band subset for hyperspectral image classification (HSIC), which adopts the self-supervised learning paradigm to implement the BS by auxiliary spectrum rebuilding task. In specific, we utilized a Convolutional neural network (CNN) and Graph Convolutional Network (GCN) for the spectral-spatial feature extraction. Next, GCN and CNN are developed for the refinement of the band correlation sequentially. Afterward, the selected bands in terms of the acquired correlation are fed into the presented self-supervised spectrum rebuilding network for spectral reconstruction. Simultaneously, the proposed architecture completed the selection with the optimization of the band reconstruction by a defined loss function. In this way, we supply substitution for selection criterion and path searching through the end-to-end framework. The extensive experimental results and analysis demonstrated that the proposed hybrid architecture provided a competitive band subset for the classification, and the accuracies with different types of classifiers are more effective than the compared BS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Selenaxue发布了新的文献求助10
刚刚
LingO发布了新的文献求助10
1秒前
2秒前
3秒前
大个应助Metbutterly采纳,获得10
3秒前
3秒前
酷波er应助Xie采纳,获得10
3秒前
xiaoKai完成签到 ,获得积分10
4秒前
4秒前
cara发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
研友_VZG7GZ应助111采纳,获得10
6秒前
爱喝红茶的钟同学完成签到,获得积分10
6秒前
凉笙墨染发布了新的文献求助10
7秒前
7秒前
陪你去流浪完成签到 ,获得积分10
7秒前
杉杉发布了新的文献求助10
8秒前
慕青应助林一采纳,获得10
8秒前
Lynn发布了新的文献求助10
9秒前
啦啦完成签到 ,获得积分10
9秒前
9秒前
周一发布了新的文献求助20
9秒前
9秒前
繁星洒满夜幕完成签到,获得积分10
11秒前
11秒前
快乐难敌发布了新的文献求助10
12秒前
12秒前
阿绿完成签到 ,获得积分20
12秒前
12秒前
LEMONS应助风兮雨采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得30
14秒前
Jiang应助科研通管家采纳,获得50
14秒前
14秒前
14秒前
享邑完成签到,获得积分10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785