Unsupervised Hyperspectral Band Selection via Hybrid Graph Convolutional Network

高光谱成像 判别式 模式识别(心理学) 计算机科学 冗余(工程) 人工智能 卷积神经网络 光谱带 特征提取 特征选择 降维 图形 上下文图像分类 遥感 图像(数学) 理论计算机科学 操作系统 地质学
作者
Chunyan Yu,Sijia Zhou,Meiping Song,Baoyu Gong,Enyu Zhao,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2022.3179513
摘要

Hyperspectral image (HSI) provided with a substantial number of correlated bands causes calculation consumption and an undesirable "dimension disaster" problem for the classification. Band selection (BS) is an effective measure to reduce the information redundancy with the physics spectrum preserved for HSI. Although the existing BS methods have achieved noticeable progress, the correlation between neighbor bands still needs to be mined deeply for an effective selection criterion. This paper proposes a BS approach to collecting the discriminative band subset for hyperspectral image classification (HSIC), which adopts the self-supervised learning paradigm to implement the BS by auxiliary spectrum rebuilding task. In specific, we utilized a Convolutional neural network (CNN) and Graph Convolutional Network (GCN) for the spectral-spatial feature extraction. Next, GCN and CNN are developed for the refinement of the band correlation sequentially. Afterward, the selected bands in terms of the acquired correlation are fed into the presented self-supervised spectrum rebuilding network for spectral reconstruction. Simultaneously, the proposed architecture completed the selection with the optimization of the band reconstruction by a defined loss function. In this way, we supply substitution for selection criterion and path searching through the end-to-end framework. The extensive experimental results and analysis demonstrated that the proposed hybrid architecture provided a competitive band subset for the classification, and the accuracies with different types of classifiers are more effective than the compared BS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Jacky采纳,获得10
1秒前
罗帕霉素发布了新的文献求助10
1秒前
完美的冰淇淋完成签到,获得积分10
2秒前
碎冰完成签到,获得积分10
3秒前
4秒前
追寻锦程发布了新的文献求助10
4秒前
4秒前
英俊的铭应助Noel采纳,获得20
5秒前
像心跳完成签到,获得积分10
6秒前
8秒前
一一应助研友_nveJ4L采纳,获得30
8秒前
像心跳发布了新的文献求助10
9秒前
10秒前
哈哈完成签到,获得积分10
10秒前
yapo发布了新的文献求助10
10秒前
罗帕霉素完成签到,获得积分10
11秒前
Jasper应助hugo采纳,获得10
11秒前
善学以致用应助云桑采纳,获得10
11秒前
公爵完成签到,获得积分10
12秒前
一颗柚子完成签到,获得积分10
12秒前
FashionBoy应助傣妹纸如裴洱采纳,获得10
12秒前
yxli完成签到,获得积分10
13秒前
13秒前
14秒前
LBJ23发布了新的文献求助10
14秒前
psycho发布了新的文献求助10
15秒前
15秒前
screct关注了科研通微信公众号
16秒前
16秒前
云生甲地完成签到,获得积分10
16秒前
Moss发布了新的文献求助10
17秒前
18秒前
今后应助kyf采纳,获得10
18秒前
万能图书馆应助枯木逢春采纳,获得10
18秒前
龙龙完成签到,获得积分10
18秒前
18秒前
你报完成签到,获得积分10
18秒前
不配.应助愉快幻悲采纳,获得10
19秒前
贺知什么书完成签到,获得积分10
19秒前
善学以致用应助psycho采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101379
求助须知:如何正确求助?哪些是违规求助? 2752746
关于积分的说明 7620795
捐赠科研通 2405017
什么是DOI,文献DOI怎么找? 1276094
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058