Unsupervised Hyperspectral Band Selection via Hybrid Graph Convolutional Network

高光谱成像 判别式 模式识别(心理学) 计算机科学 冗余(工程) 人工智能 卷积神经网络 光谱带 特征提取 特征选择 降维 图形 上下文图像分类 遥感 图像(数学) 理论计算机科学 操作系统 地质学
作者
Chunyan Yu,Sijia Zhou,Meiping Song,Baoyu Gong,Enyu Zhao,Chein‐I Chang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2022.3179513
摘要

Hyperspectral image (HSI) provided with a substantial number of correlated bands causes calculation consumption and an undesirable "dimension disaster" problem for the classification. Band selection (BS) is an effective measure to reduce the information redundancy with the physics spectrum preserved for HSI. Although the existing BS methods have achieved noticeable progress, the correlation between neighbor bands still needs to be mined deeply for an effective selection criterion. This paper proposes a BS approach to collecting the discriminative band subset for hyperspectral image classification (HSIC), which adopts the self-supervised learning paradigm to implement the BS by auxiliary spectrum rebuilding task. In specific, we utilized a Convolutional neural network (CNN) and Graph Convolutional Network (GCN) for the spectral-spatial feature extraction. Next, GCN and CNN are developed for the refinement of the band correlation sequentially. Afterward, the selected bands in terms of the acquired correlation are fed into the presented self-supervised spectrum rebuilding network for spectral reconstruction. Simultaneously, the proposed architecture completed the selection with the optimization of the band reconstruction by a defined loss function. In this way, we supply substitution for selection criterion and path searching through the end-to-end framework. The extensive experimental results and analysis demonstrated that the proposed hybrid architecture provided a competitive band subset for the classification, and the accuracies with different types of classifiers are more effective than the compared BS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Meteor发布了新的文献求助10
刚刚
LLJ发布了新的文献求助10
刚刚
JamesPei应助执着的鹏煊采纳,获得10
1秒前
2秒前
搞怪的数据线完成签到,获得积分10
3秒前
大模型应助ooo采纳,获得10
4秒前
xxfsx应助陈秋采纳,获得10
5秒前
Lucycomplex完成签到,获得积分10
5秒前
5秒前
5秒前
Cynthia发布了新的文献求助50
5秒前
xiaixax完成签到,获得积分10
5秒前
5秒前
6秒前
SciGPT应助季世坤采纳,获得10
6秒前
9秒前
2569发布了新的文献求助30
9秒前
kiven完成签到 ,获得积分10
10秒前
niu发布了新的文献求助10
10秒前
aco发布了新的文献求助10
12秒前
13秒前
14秒前
black456完成签到,获得积分10
15秒前
萌萌发布了新的文献求助10
15秒前
跳跃大侠完成签到,获得积分10
15秒前
16秒前
zsyhcl应助Doctor_Mill采纳,获得10
16秒前
17秒前
猫猫雨完成签到,获得积分10
17秒前
田様应助2569采纳,获得10
18秒前
跳跃大侠发布了新的文献求助10
19秒前
韧战发布了新的文献求助10
19秒前
19秒前
19秒前
666发布了新的文献求助10
20秒前
20秒前
在水一方应助毛毛采纳,获得10
21秒前
汉堡包应助科大第一深情采纳,获得10
21秒前
明天的你完成签到 ,获得积分10
22秒前
finger完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288858
求助须知:如何正确求助?哪些是违规求助? 4440637
关于积分的说明 13825255
捐赠科研通 4322964
什么是DOI,文献DOI怎么找? 2372842
邀请新用户注册赠送积分活动 1368324
关于科研通互助平台的介绍 1332194