Learning to branch with Tree-aware Branching Transformers

计算机科学 支化(高分子化学) 参数化复杂度 二元决策图 编码 理论计算机科学 机器学习 人工智能 算法 数学优化 数学 生物化学 化学 材料科学 复合材料 基因
作者
Jiacheng Lin,Jialin Zhu,Huangang Wang,Tao Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109455-109455 被引量:2
标识
DOI:10.1016/j.knosys.2022.109455
摘要

Machine learning techniques have attracted increasing attention in learning Branch-and-Bound (B&B) variable selection policies, but most of the existing methods lack extensions to heterogeneous problems. Though parameterizing search trees has recently shown a promising alternative for heterogeneous scenarios, it remains challenging to maintain good performance when generalizing to instances comparatively harder to solve than those seen during training. To fill this gap, we propose a tree-aware transformer-based branching framework for branching efficiently and effectively. Specifically, the transformer-based branching is conducted, in which the mutual connections between candidate variables can be evaluated by the self-attention mechanism. Then, we novelly encode the empirical data in the search tree, i.e., branching history, with a binary tree representation. In this way, we can fully utilize features exploited from the parameterized B&B search trees and stronger branching policies can be attained thereby. The proposed models are evaluated on multiple benchmark instances and achieve a significant boost on performance, in terms of smaller B&B search trees and lower primal–dual integrals and gaps for harder problems within a given time limit. Ablation studies further validate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助美好蜻蜓采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得30
1秒前
所所应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
吴旭东完成签到,获得积分10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
调皮冰姬应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
寻道图强应助科研通管家采纳,获得50
1秒前
薯薯完成签到,获得积分10
1秒前
思源应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
苗条而大河完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小Y应助科研通管家采纳,获得20
1秒前
Zx_1993应助科研通管家采纳,获得10
2秒前
晚若旧完成签到,获得积分10
2秒前
avalanche应助科研通管家采纳,获得20
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得30
2秒前
科研乞丐应助科研通管家采纳,获得20
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769