亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM

计算机科学 杠杆(统计) 神经影像学 认知障碍 人工智能 功能磁共振成像 认知 阿尔茨海默病 相似性(几何) 模式识别(心理学) 疾病 神经科学 医学 内科学 心理学 图像(数学)
作者
Baiying Lei,Kun Zhang,Dongdong Liu,Yanwu Xu,Guanghui Yue,Jiuwen Cao,Huoyou Hu,Shuangzhi Yu,Peng Yang,Tianfu Wang,Yali Qiu,Xiaohua Xiao,Shuqiang Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:254: 109466-109466 被引量:5
标识
DOI:10.1016/j.knosys.2022.109466
摘要

Alzheimer's disease (AD) is an incurable neurodegenerative disease. Mild cognitive impairment (MCI) is often considered a critical time window for predicting early conversion to Alzheimer's disease (AD), with approximately 80% of amnestic MCI patients developing AD within 6 years. MCI can be further categorized into two stages (i.e., early MCI (EMCI) and late MCI (LMCI)). To identify EMCI effectively and understand how it changes brain function, the brain functional connectivity network (BFCN) has been widely used. However, the conventional methods mainly focused on detection from a single time-point data, which could not discover the changes during the disease progression without using multi-time points data. Therefore, in this work, we carry out a longitudinal study based on multi-time points data to detect EMCI and validate them on two public datasets. Specifically, we first construct a similarity-constrained group network (SGN) from the resting state functional magnetic resonance imaging (rs-fMRI) data at different time-points, and then use a stacked bidirectional long short term memory (SBi-LSTM) network to extract features for longitudinal analysis. Also, we use a self-attention mechanism to leverage high-level features to further improve the detection accuracy. Evaluated on the public Alzheimer's Disease Neuroimaging Initiative Phase II and III (ADNI-2 and ADNI-3) databases, the proposed method outperforms several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou发布了新的文献求助10
2秒前
刘敏完成签到 ,获得积分10
9秒前
10秒前
17秒前
追寻的宛er完成签到 ,获得积分10
23秒前
yeyi9851应助科研通管家采纳,获得10
26秒前
StellaZhang完成签到 ,获得积分10
44秒前
风花雪月完成签到 ,获得积分10
47秒前
Billy应助GeoEye采纳,获得10
53秒前
Sanci完成签到,获得积分10
1分钟前
Sanci发布了新的文献求助10
1分钟前
1分钟前
h3m完成签到 ,获得积分10
1分钟前
9464完成签到 ,获得积分10
1分钟前
1分钟前
汉堡包应助谷粱夏山采纳,获得10
1分钟前
沉默白猫完成签到 ,获得积分10
1分钟前
隐形曼青应助Tianqi采纳,获得10
1分钟前
2分钟前
hehehe完成签到,获得积分10
2分钟前
Billy应助GeoEye采纳,获得30
2分钟前
hehehe发布了新的文献求助10
2分钟前
善学以致用应助wyq采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得200
2分钟前
yeyi9851应助科研通管家采纳,获得10
2分钟前
Hayat应助科研通管家采纳,获得10
2分钟前
CC2333完成签到 ,获得积分10
2分钟前
libobobo完成签到 ,获得积分10
2分钟前
2分钟前
dhyzf1214完成签到,获得积分10
2分钟前
忧郁小鸽子完成签到,获得积分10
3分钟前
科研狗发布了新的文献求助10
3分钟前
可爱的函函应助Huang采纳,获得30
3分钟前
李健的小迷弟应助科研狗采纳,获得10
3分钟前
铮铮铁骨发布了新的文献求助10
3分钟前
嗯哼应助醉酒笑红尘采纳,获得10
3分钟前
3分钟前
wangbq完成签到 ,获得积分10
3分钟前
Huang发布了新的文献求助30
3分钟前
3分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056430
求助须知:如何正确求助?哪些是违规求助? 2713056
关于积分的说明 7434409
捐赠科研通 2358078
什么是DOI,文献DOI怎么找? 1249228
科研通“疑难数据库(出版商)”最低求助积分说明 606981
版权声明 596195