Estimating Effects of Incentive Contracts in Online Labor Platforms

估计员 激励 计算机科学 校长(计算机安全) 数学优化 一致性(知识库) 生产(经济) 功能(生物学) 道德风险 灵活性(工程) 激励相容性 任务(项目管理) 计量经济学 经济 微观经济学 数学 人工智能 统计 管理 进化生物学 生物 操作系统
作者
Nur Kaynar,Auyon Siddiq
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2106-2126 被引量:11
标识
DOI:10.1287/mnsc.2022.4450
摘要

The design of performance-based incentives—commonly used in online labor platforms—can be naturally posed as a moral hazard principal-agent problem. In this setting, a key input to the principal’s optimal contracting problem is the agent’s production function: the dependence of agent output on effort. Although agent production is classically assumed to be known to the principal, this is unlikely to be the case in practice. Motivated by the design of performance-based incentives, we present a method for estimating a principal-agent model from data on incentive contracts and associated outcomes, with a focus on estimating agent production. The proposed estimator is statistically consistent and can be expressed as a mathematical program. To circumvent computational challenges with solving the estimation problem exactly, we approximate it as an integer program, which we solve through a column generation algorithm that uses hypothesis tests to select variables. We show that our approximation scheme and solution technique both preserve the estimator’s consistency and combine to dramatically reduce the computational time required to obtain sound estimates. To demonstrate our method, we conducted an experiment on a crowdwork platform (Amazon Mechanical Turk) by randomly assigning incentive contracts with varying pay rates among a pool of workers completing the same task. We present numerical results illustrating how our estimator combined with experimentation can shed light on the efficacy of performance-based incentives. This paper was accepted by Chung Piaw Teo, optimization. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2022.4450 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小明给小明的求助进行了留言
刚刚
pluto应助Wunier61采纳,获得10
1秒前
279完成签到,获得积分10
1秒前
缥缈襄发布了新的文献求助10
1秒前
pluto应助fcyyc采纳,获得10
1秒前
1秒前
大个应助一一采纳,获得10
1秒前
文静的颖完成签到,获得积分10
1秒前
wangxiangqin发布了新的文献求助10
1秒前
洁净的鹰关注了科研通微信公众号
2秒前
爱学习的椰子完成签到 ,获得积分10
2秒前
邢晓彤完成签到 ,获得积分10
2秒前
研友_8y2G0L发布了新的文献求助20
3秒前
3秒前
直率的之桃完成签到,获得积分10
3秒前
水电站完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
YE完成签到,获得积分10
4秒前
4秒前
5秒前
Shrimp发布了新的文献求助15
5秒前
疯狂77完成签到 ,获得积分10
5秒前
简单的思松完成签到,获得积分10
5秒前
duna完成签到,获得积分10
6秒前
预现ls完成签到,获得积分10
6秒前
小蘑菇应助火星上中蓝采纳,获得10
6秒前
整齐的惮完成签到 ,获得积分10
6秒前
Sun发布了新的文献求助10
6秒前
zhoupeng完成签到 ,获得积分10
6秒前
7秒前
俊鱼完成签到,获得积分10
7秒前
下X下发布了新的文献求助10
7秒前
11发布了新的文献求助10
8秒前
8秒前
可爱的函函应助eghiefefe采纳,获得10
8秒前
三人行发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246