Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography

过程(计算) 过程开发 色谱法 一致性(知识库) 工艺工程 化学 栏(排版) 计算机科学 工程类 人工智能 电信 操作系统 帧(网络)
作者
Yan-Na Sun,Ce Shi,Xue‐Zhao Zhong,Xu-Jun Chen,Ran Chen,Qilei Zhang,Shan‐Jing Yao,Alois Jungbauer,Dong‐Qiang Lin
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1677: 463311-463311 被引量:8
标识
DOI:10.1016/j.chroma.2022.463311
摘要

Multi-column counter-current chromatography is an advanced technology used for continuous capture processes to improve process productivity, resin capacity utilization and product consistency. However, process development is difficult due to process complexity. In this work, some general and convenient guidances for three-column periodic counter-current chromatography (3C-PCC) were developed. Boundaries and distributions of operating windows of 3C-PCC processes were clarified by model-based predictions. Interactive effects of feed concentration (c0), resin properties (qmax and De), recovery and regeneration times (tRR) were evaluated over a wide range for maximum productivity (Pmax). Furthermore, variation of Pmax was analyzed considering the constraint factors (capacity utilization target and flow rate limitation). The plateau value of Pmax was determined by qmax and tRR. The operating conditions for Pmax were controlled by qmax, tRR and c0 interactively, and a critical concentration existed to judge whether the operating conditions of Pmax under constraints. Based on the comprehensive understanding on 3C-PCC processes, a model-free strategy was proposed for process development. The optimal operating conditions could be determined based on a set of breakthrough curves, which was used to optimize process performance and screen resins. The approach proposed was validated using monoclonal antibody (mAb) capture with a 3C-PCC system under various mAb and feed concentrations. The results demonstrated that a thorough model-based process understanding on multi-column counter-current chromatography is important and could improve process development and establish a model-free strategy for more convenient applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等于零完成签到 ,获得积分10
1秒前
Hzml完成签到 ,获得积分10
1秒前
6秒前
伶俐芷珊发布了新的文献求助10
10秒前
wxxsx发布了新的文献求助10
14秒前
净心完成签到 ,获得积分10
17秒前
无情的冰香完成签到 ,获得积分10
19秒前
mp5完成签到,获得积分10
25秒前
初心路完成签到 ,获得积分10
28秒前
huenguyenvan完成签到,获得积分10
29秒前
积极从蕾应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
31秒前
wanci应助科研通管家采纳,获得10
31秒前
31秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
紫焰完成签到 ,获得积分10
39秒前
分手吧亚索完成签到,获得积分10
45秒前
高高完成签到 ,获得积分10
56秒前
Lrcx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
景清完成签到 ,获得积分10
1分钟前
zero发布了新的文献求助10
1分钟前
怡然傲南发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
奇奇怪怪的大鱼完成签到,获得积分10
1分钟前
叮叮当当发布了新的文献求助30
1分钟前
小田完成签到 ,获得积分10
1分钟前
出厂价完成签到,获得积分10
1分钟前
魔幻以菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
LM完成签到,获得积分10
1分钟前
叮叮当当发布了新的文献求助10
1分钟前
阿包完成签到 ,获得积分10
1分钟前
Yi完成签到,获得积分10
1分钟前
小休完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603452
求助须知:如何正确求助?哪些是违规求助? 4688447
关于积分的说明 14853716
捐赠科研通 4692182
什么是DOI,文献DOI怎么找? 2540735
邀请新用户注册赠送积分活动 1507039
关于科研通互助平台的介绍 1471705