Model-based evaluation and model-free strategy for process development of three-column periodic counter-current chromatography

过程(计算) 过程开发 色谱法 一致性(知识库) 工艺工程 化学 栏(排版) 计算机科学 工程类 人工智能 操作系统 电信 帧(网络)
作者
Yan-Na Sun,Ce Shi,Xue‐Zhao Zhong,Xu-Jun Chen,Ran Chen,Qilei Zhang,Shan‐Jing Yao,Alois Jungbauer,Dong‐Qiang Lin
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1677: 463311-463311 被引量:8
标识
DOI:10.1016/j.chroma.2022.463311
摘要

Multi-column counter-current chromatography is an advanced technology used for continuous capture processes to improve process productivity, resin capacity utilization and product consistency. However, process development is difficult due to process complexity. In this work, some general and convenient guidances for three-column periodic counter-current chromatography (3C-PCC) were developed. Boundaries and distributions of operating windows of 3C-PCC processes were clarified by model-based predictions. Interactive effects of feed concentration (c0), resin properties (qmax and De), recovery and regeneration times (tRR) were evaluated over a wide range for maximum productivity (Pmax). Furthermore, variation of Pmax was analyzed considering the constraint factors (capacity utilization target and flow rate limitation). The plateau value of Pmax was determined by qmax and tRR. The operating conditions for Pmax were controlled by qmax, tRR and c0 interactively, and a critical concentration existed to judge whether the operating conditions of Pmax under constraints. Based on the comprehensive understanding on 3C-PCC processes, a model-free strategy was proposed for process development. The optimal operating conditions could be determined based on a set of breakthrough curves, which was used to optimize process performance and screen resins. The approach proposed was validated using monoclonal antibody (mAb) capture with a 3C-PCC system under various mAb and feed concentrations. The results demonstrated that a thorough model-based process understanding on multi-column counter-current chromatography is important and could improve process development and establish a model-free strategy for more convenient applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷心菜完成签到,获得积分10
1秒前
jiangshanshan发布了新的文献求助10
1秒前
HHHHTTTT完成签到,获得积分10
1秒前
一米八八完成签到,获得积分10
2秒前
思源应助wenjian采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
能干的荆完成签到 ,获得积分10
3秒前
小蒋同学发布了新的文献求助10
3秒前
仙女发布了新的文献求助10
4秒前
4秒前
Richard完成签到 ,获得积分10
4秒前
季刘杰完成签到 ,获得积分10
4秒前
坚强的阳光菇完成签到 ,获得积分10
5秒前
lune应助程西采纳,获得20
5秒前
距破之舞完成签到,获得积分10
6秒前
6秒前
从容灭绝发布了新的文献求助10
6秒前
zhang完成签到 ,获得积分10
8秒前
8秒前
8秒前
GOW完成签到,获得积分10
8秒前
藿香ZQ水完成签到 ,获得积分10
9秒前
细腻砖头完成签到,获得积分10
9秒前
云云完成签到,获得积分10
10秒前
10秒前
ziwei完成签到,获得积分10
11秒前
含蓄剑愁完成签到,获得积分10
11秒前
Jenna发布了新的文献求助10
12秒前
zxt完成签到,获得积分10
12秒前
小巧健柏完成签到,获得积分10
12秒前
黑糖完成签到,获得积分10
12秒前
13秒前
舒适小笼包完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
张大大完成签到,获得积分10
13秒前
nidie完成签到,获得积分10
13秒前
猪哥完成签到 ,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773777
求助须知:如何正确求助?哪些是违规求助? 5613486
关于积分的说明 15432599
捐赠科研通 4906156
什么是DOI,文献DOI怎么找? 2640083
邀请新用户注册赠送积分活动 1587955
关于科研通互助平台的介绍 1542987