超级电容器
材料科学
电催化剂
异质结
电解质
纳米材料
分解水
贵金属
碳纤维
化学工程
煅烧
纳米技术
电化学
电极
催化作用
复合数
金属
光电子学
光催化
化学
复合材料
冶金
有机化学
物理化学
工程类
作者
Ruiqi Liu,Xiangjun Shi,Yi Wen,Xiaoxuan Shao,Su Chen,Jing Hu,Shusheng Xu
标识
DOI:10.1016/j.jechem.2022.07.015
摘要
Developing multi-functional and low-cost noble-metal-free catalysts such as transition metal phosphides (TMPs) to replace noble-metal is of practical significance for energy conversion and storage. However, the low-durability and the agglomeration phenomenon during the electrochemical process limit their practical applications. Herein, using metal–organic frameworks (MOFs) as the precursor and a combined strategy of gradient temperature calcination and thermal phosphorization, a 0D/2D heterostructure of NiCoFe-P quantum dots (QDs) anchored on porous carbon was successfully developed as highly efficient electrode materials for overall water splitting and supercapacitors. Owing to this distinctive 0D/2D heterostructure and the synergistic effect of multi-metallic TMPs, the NiCoFe-P/C exhibits excellent electrocatalytic activity and durability of HER (87 mV at 10 mA cm−2) and OER (257 mV at 100 mA cm−2) in the KOH electrolyte. When NiCoFe-P/C is used as the two electrodes of electrolyzed water, only 1.55 V can drive the current density to 10 mA cm−2. At the same time, our NiCoFe-P/C possessed extraordinary property for charge storage. In particular, an ultra-high energy density of 100.8 Wh kg−1 was achieved at a power density of 900.0 W kg−1 for our assembled hybrid supercapacitor device NiCoFe-P/C (2:1)//activated carbon (AC). This work may open a potential way for the design of 0D/2D hybrid multi-functional nanomaterials based on TMPs QDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI