PanIN and CAF Transitions in Pancreatic Carcinogenesis Revealed with Spatial Data Integration

胰腺上皮内瘤变 肿瘤微环境 癌症研究 癌变 胰腺癌 生物 上皮内瘤变 细胞 腺癌 病理 癌症 计算生物学 胰腺导管腺癌 医学 前列腺癌 肿瘤细胞 遗传学
作者
Alexander T.F. Bell,Jacob T. Mitchell,Ashley Kiemen,Kohei Fujikura,Helen Fedor,Bonnie Gambichler,Atul Deshpande,Pei‐Hsun Wu,D. Sidiropoulos,Rossin Erbe,Jacob Stern,Rena Chan,Stephen R. Williams,James M. Chell,Jacquelyn W. Zimmerman,Denis Wirtz,Elizabeth M. Jaffee,Laura D. Wood,Elana J. Fertig,Luciane T. Kagohara
标识
DOI:10.1101/2022.07.16.500312
摘要

Abstract Spatial transcriptomics (ST) is a powerful new approach to characterize the cellular and molecular architecture of the tumor microenvironment. Previous single-cell RNA-sequencing (scRNA-seq) studies of pancreatic ductal adenocarcinoma (PDAC) have revealed a complex immunosuppressive environment characterized by numerous cancer associated fibroblasts (CAFs) subtypes that contributes to poor outcomes. Nonetheless, the evolutionary processes yielding that microenvironment remain unknown. Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion with potential to develop into PDAC, but the formalin-fixed and paraffin-embedded (FFPE) specimens required for PanIN diagnosis preclude scRNA-seq profiling. We developed a new experimental pipeline for FFPE ST analysis of PanINs that preserves clinical specimens for diagnosis. We further developed novel multi-omics analysis methods for threefold integration of imaging, ST, and scRNA-seq data to analyze the premalignant microenvironment. The integration of ST and imaging enables automated cell type annotation of ST spots at a single-cell resolution, enabling spot selection and deconvolution for unique cellular components of the tumor microenvironment (TME). Overall, this approach demonstrates that PanINs are surrounded by the same subtypes of CAFs present in invasive PDACs, and that the PanIN lesions are predominantly of the classical PDAC subtype. Moreover, this new experimental and computational protocol for ST analysis suggests a biological model in which CAF-PanIN interactions promote inflammatory signaling in neoplastic cells which transitions to proliferative signaling as PanINs progress to PDAC. Summary Pancreatic intraepithelial neoplasia (PanINs) are pre-malignant lesions that progress into pancreatic ductal adenocarcinoma (PDAC). Recent advances in single-cell technologies have allowed for detailed insights into the molecular and cellular processes of PDAC. However, human PanINs are stored as formalin-fixed and paraffin-embedded (FFPE) specimens limiting similar profiling of human carcinogenesis. Here, we describe a new analysis protocol that enables spatial transcriptomics (ST) analysis of PanINs while preserving the FFPE blocks required for clinical assessment. The matched H&E imaging for the ST data enables novel machine learning approaches to automate cell type annotations at a single-cell resolution and isolate neoplastic regions on the tissue. Transcriptional profiles of these annotated cells enable further refinement of imaging-based cellular annotations, showing that PanINs are predominatly of the classical subtype and surrounded by PDAC cancer associated fibroblast (CAF) subtypes. Applying transfer learning to integrate ST PanIN data with PDAC scRNA-seq data enables the analysis of cellular and molecular progression from PanINs to PDAC. This analysis identified a transition between inflammatory signaling induced by CAFs and proliferative signaling in PanIN cells as they become invasive cancers. Altogether, this integration of imaging, ST, and scRNA-seq data provides an experimental and computational approach for the analysis of cancer development and progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caicai完成签到,获得积分10
刚刚
4秒前
皓轩完成签到 ,获得积分10
4秒前
彪壮的涵菱完成签到 ,获得积分10
4秒前
conghuang完成签到,获得积分10
6秒前
现实的曼安完成签到 ,获得积分10
6秒前
淡淡醉波wuliao完成签到 ,获得积分10
7秒前
小常完成签到 ,获得积分10
9秒前
merrylake完成签到 ,获得积分10
10秒前
ArkZ完成签到 ,获得积分10
11秒前
11111完成签到,获得积分10
13秒前
雨林完成签到,获得积分10
13秒前
Keyuuu30完成签到,获得积分10
14秒前
33完成签到 ,获得积分10
15秒前
36456657完成签到,获得积分0
15秒前
结实曼凡完成签到 ,获得积分10
16秒前
Eason Liu完成签到,获得积分10
17秒前
虚拟的尔蓝完成签到 ,获得积分10
18秒前
缓慢雅青完成签到 ,获得积分10
19秒前
奶油泡fu完成签到 ,获得积分10
19秒前
从容映易完成签到,获得积分10
21秒前
CDI和LIB完成签到,获得积分10
23秒前
杨杨杨完成签到,获得积分10
23秒前
心随风飞完成签到,获得积分10
24秒前
匆匆赶路人完成签到 ,获得积分10
25秒前
青青完成签到 ,获得积分10
28秒前
chenkj完成签到,获得积分10
30秒前
DONNYTIO完成签到,获得积分10
30秒前
EricSai完成签到,获得积分10
30秒前
ikun完成签到,获得积分10
30秒前
AATRAHASIS完成签到,获得积分10
31秒前
zheweitang完成签到,获得积分10
31秒前
拉宝了完成签到,获得积分10
31秒前
氟兊锝钼完成签到 ,获得积分10
31秒前
王木木爱喝周完成签到 ,获得积分10
32秒前
三伏天发布了新的文献求助10
32秒前
迪亚波罗发布了新的文献求助30
33秒前
郭生完成签到,获得积分10
34秒前
Tina酱完成签到,获得积分10
35秒前
YYY完成签到,获得积分10
36秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793778
关于积分的说明 7807209
捐赠科研通 2450039
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350