电解质
环氧乙烷
材料科学
电化学
氧化物
锂(药物)
化学工程
碱金属
电极
聚合物
快离子导体
甲基丙烯酸酯
金属
纳米技术
无机化学
化学
聚合
有机化学
物理化学
复合材料
内分泌学
冶金
工程类
医学
共聚物
作者
Yun Su,Xiaohui Rong,Ang Gao,Yuan Liu,Jianwei Li,Minglei Mao,Xingguo Qi,Guoliang Chai,Qinghua Zhang,Liumin Suo,Lin Gu,Hong Li,Xuejie Huang,Liquan Chen,Binyuan Liu,Yong‐Sheng Hu
标识
DOI:10.1038/s41467-022-31792-5
摘要
Poly(ethylene oxide)-based solid-state electrolytes are widely considered promising candidates for the next generation of lithium and sodium metal batteries. However, several challenges, including low oxidation resistance and low cation transference number, hinder poly(ethylene oxide)-based electrolytes for broad applications. To circumvent these issues, here, we propose the design, synthesis and application of a fluoropolymer, i.e., poly(2,2,2-trifluoroethyl methacrylate). This polymer, when introduced into a poly(ethylene oxide)-based solid electrolyte, improves the electrochemical window stability and transference number. Via multiple physicochemical and theoretical characterizations, we identify the presence of tailored supramolecular bonds and peculiar morphological structures as the main factors responsible for the improved electrochemical performances. The polymeric solid electrolyte is also investigated in full lithium and sodium metal lab-scale cells. Interestingly, when tested in a single-layer pouch cell configuration in combination with a Li metal negative electrode and a LiMn0.6Fe0.4PO4-based positive electrode, the polymeric solid-state electrolyte enables 200 cycles at 42 mA·g-1 and 70 °C with a stable discharge capacity of approximately 2.5 mAh when an external pressure of 0.28 MPa is applied.
科研通智能强力驱动
Strongly Powered by AbleSci AI