Delocalization suppresses nonradiative charge recombination in polymer solar cells

结晶度 离域电子 带隙 接受者 能量转换效率 光化学 超快激光光谱学 化学 化学物理 材料科学 分子物理学 原子物理学 光电子学 光谱学 物理 凝聚态物理 结晶学 量子力学 有机化学
作者
Shin‐ichiro Natsuda,Toshiharu Saito,Rei Shirouchi,Kenta Imakita,Yasunari Tamai
出处
期刊:Polymer Journal [Springer Nature]
卷期号:54 (11): 1345-1353 被引量:8
标识
DOI:10.1038/s41428-022-00685-1
摘要

Suppressing nonradiative deactivation of charge transfer (CT) states is pivotal to realizing further improvements in the power conversion efficiencies of polymer solar cells (PSCs). According to the energy gap law, the nonradiative decay rate constant knr scales exponentially with decreasing CT state energy ECT; thereby, as long as knr is governed by the energy gap law, a decrease in ECT will inevitably increase nonradiative deactivation of CT states and hence decrease the power conversion efficiency. Here, we report the nonradiative decay dynamics of CT states generated in various nonfullerene-acceptor-based PSCs by using transient absorption spectroscopy. The absence of a strong correlation between knr and ECT indicates that the energy gap law is not valid for these PSCs and that parameters other than ECT contribute significantly to knr. We found that knr decreased with an increase in materials' crystallinities, indicating that increasing crystallinity leads to CT state delocalization, which in turn mitigates the nonradiative deactivation of CT states. We report the nonradiative decay dynamics of charge transfer (CT) states generated in nonfullerene-acceptor-based polymer solar cells. The nonradiative decay rate constants knr decreased with an increase in the efficiency for dissociation of CT states into free carriers, indicating that nonradiative decay of CT states can be mitigated by increasing the delocalization of the CT state wave function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助向北游采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI5应助MRCHONG采纳,获得10
1秒前
Simon应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
wangg完成签到,获得积分20
1秒前
1秒前
Zn应助科研通管家采纳,获得20
1秒前
吹雪完成签到,获得积分0
1秒前
暴躁四叔应助科研通管家采纳,获得20
2秒前
2秒前
wanci应助科研通管家采纳,获得30
2秒前
2秒前
hhh发布了新的文献求助10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Angelo完成签到 ,获得积分10
3秒前
xxxidgkris发布了新的文献求助30
3秒前
RC_Wang应助搬砖美少女采纳,获得10
3秒前
567完成签到,获得积分10
3秒前
3秒前
阳光人生完成签到,获得积分10
3秒前
4秒前
bkagyin应助一平采纳,获得10
4秒前
LLL完成签到,获得积分10
5秒前
liuliumei完成签到,获得积分10
5秒前
华仔应助呼啦呼啦咔采纳,获得10
5秒前
wangg发布了新的文献求助10
5秒前
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672