温室气体
北京
环境科学
除数指数
环境工程
城市固体废物
人口
发射强度
气候变化
自然资源经济学
环境保护
能源消耗
废物管理
能量强度
工程类
经济
地理
中国
环境卫生
考古
生态学
激发
电气工程
医学
生物
作者
Ying Li,Sumei Zhang,Chao Liu
出处
期刊:Sustainability
[MDPI AG]
日期:2022-07-08
卷期号:14 (14): 8398-8398
被引量:12
摘要
Greenhouse gas (GHG) emissions are a significant cause of climate change, and municipal solid waste (MSW) is an important source of GHG emissions. In this study, GHG emissions from MSW treatment in Beijing during 2006–2019 were accounted, basing on the Intergovernmental Panel on Climate Change (IPCC) inventory model; the influencing factors affecting GHG emissions were analyzed by the logarithmic mean Divisia index (LMDI) model combined with the extended Kaya identity, and the GHG mitigation potential were explored based on different MSW management policy contexts. The results showed that the GHG emissions from MSW treatment in Beijing increased from 3.62 Mt CO2e in 2006 to 6.57 Mt CO2e in 2019, with an average annual growth rate (AAGR) of 4.68%, of which 89.34–99.36% was CH4. Moreover, the driving factors of GHG emissions from MSW treatment were, in descending order: economic output (EO), GHG emission intensity (EI), population size (P), and urbanization rate (U). The inhibiting factors were, in descending order: MSW treatment pattern (TP) and MSW treatment intensity (TI). Furthermore, compared with the BAU (business–as–usual) scenario, the GHG mitigation potential of the MSW classification and the population control scenario were 35.79% and 0.51%, respectively, by 2030.
科研通智能强力驱动
Strongly Powered by AbleSci AI