Laser-accelerated phase transformation in cesium lead iodide perovskite

材料科学 相(物质) 光激发 水分 光致发光 钙钛矿(结构) 光伏 半导体 吸收(声学) 带隙 光电子学 化学 光伏系统 复合材料 原子物理学 结晶学 物理 生物 有机化学 激发态 生态学
作者
Zhenni Lin,Maria C. Folgueras,Han K. D. Le,Mengyu Gao,Peidong Yang
出处
期刊:Matter [Elsevier BV]
卷期号:5 (5): 1455-1465 被引量:6
标识
DOI:10.1016/j.matt.2022.04.002
摘要

•Photoexcitation significantly accelerates the moisture-induced phase transformation •A photodarkened state is observed prior to the high-T to low-T phase transformation •Defects created by photoexcitation are still present even after the laser is off High-temperature phase CsPbI3 has garnered increased attention due to its suitable band gap for photovoltaics, but its structural instability under ambient conditions limits its long-term application. While there have been studies on its structural stability under heat and moisture, insight on the influence of light absorption is limited. We demonstrate that, under ambient moisture, illumination by an above-band gap laser transforms high-temperature CsPbI3 into its low-temperature phase at rates that are orders of magnitude larger than that of the moisture-induced phase transformation alone, likely due to additional surface vacancy creation and/or migration. Without moisture, laser illumination does not trigger the phase transformation, but introduces defects that lower the material’s photoluminescence intensity and accelerate the high-temperature to low-temperature phase transformation when the sample is exposed to moisture. These results expand our understanding of the influence of light exposure on CsPbI3 and highlight the interdependencies at play when subjecting CsPbI3 to combined environmental stimuli. High-temperature phase CsPbI3 has garnered increased attention due to its suitable band gap for photovoltaics, but its structural instability under ambient conditions limits its long-term application. While there have been studies on its structural stability under heat and moisture, insight on the influence of light absorption is limited. We demonstrate that, under ambient moisture, illumination by an above-band gap laser transforms high-temperature CsPbI3 into its low-temperature phase at rates that are orders of magnitude larger than that of the moisture-induced phase transformation alone, likely due to additional surface vacancy creation and/or migration. Without moisture, laser illumination does not trigger the phase transformation, but introduces defects that lower the material’s photoluminescence intensity and accelerate the high-temperature to low-temperature phase transformation when the sample is exposed to moisture. These results expand our understanding of the influence of light exposure on CsPbI3 and highlight the interdependencies at play when subjecting CsPbI3 to combined environmental stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浩气长存完成签到 ,获得积分10
1秒前
iday完成签到,获得积分10
4秒前
5秒前
xinxin完成签到,获得积分20
6秒前
Leeu应助缥缈的机器猫采纳,获得10
6秒前
慕青应助安然采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
lxy完成签到,获得积分10
9秒前
醉熏的鑫发布了新的文献求助10
9秒前
张狗蛋完成签到,获得积分20
10秒前
大力雁菡发布了新的文献求助10
10秒前
xinxin发布了新的文献求助10
11秒前
11秒前
小雨发布了新的文献求助10
12秒前
张狗蛋发布了新的文献求助10
13秒前
安然完成签到,获得积分20
13秒前
橙子慢慢来完成签到,获得积分10
14秒前
14秒前
小鹿呀完成签到,获得积分10
15秒前
研友_8oBxrZ完成签到,获得积分10
16秒前
bkagyin应助小雨采纳,获得10
18秒前
wu发布了新的文献求助10
18秒前
19秒前
FashionBoy应助醉熏的鑫采纳,获得10
19秒前
顷梦完成签到,获得积分10
21秒前
22秒前
24秒前
Bryan应助迅速冰之采纳,获得10
24秒前
耍酷诗槐应助迅速冰之采纳,获得10
24秒前
25秒前
25秒前
xyawl425完成签到,获得积分10
25秒前
大模型应助Wu采纳,获得10
26秒前
Theprisoners举报dd求助涉嫌违规
28秒前
Zjx发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652