A novel and sensitive electrochemical sensor based on monoclinic tungsten trioxide (WO3) nanosheets-carbon nanotubes nanocomposite (WO3-CNT) modified glass carbon electrode (GCE) is developed for the direct detection of endocrine disruptor bisphenol A (BPA) in textile sample for the first time. The electrochemical behavior of BPA on the resultant WO3-CNT/GCE sensor is investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and chronocoulometry (CC). Under the optimized conditions, the proposed sensor can be adopted to the quantification of BPA using differential pulse voltammetry (DPV), and the electro-oxidation peak current is proportional to the BPA concentration in the range of 0.03–3.0 μM and 3.0–100 μM with a correlation coefficient of 0.9993 and 0.9992, respectively. Moreover, the proposed sensor with a detection limit of 16.3 nM (S/N = 3) exhibits good reproducibility, selectivity and stability, and can be successfully applied to detect the BPA concentrations in real samples (textile, plastic and tap water) with satisfactory recovery (99.4%-110.1%). The present strategy on the hybridization of CNTs and WO3 enables more opportunities for the electrochemical detection of BPA in the practical applications.