生物
转录组
性二态性
基因
基因组
代谢组学
进化生物学
遗传学
基因表达
生物信息学
动物
作者
Mingjia Zhu,Zhenyue Wang,Yongzhi Yang,Zefu Wang,Wenjie Mu,Jianquan Liu
摘要
Dimorphic flowers growing on a single individual plant play a critical role in extreme adaption and reproductive assurance in plants and have high ecological and evolutionary significance. However, the omics bases underlying such a differentiation and maintenance remain largely unknown. We aimed to investigate this through genomic, transcriptome and metabolomic analyses of dimorphic flowers in an alpine biennial, Sinoswertia tetraptera (Gentianaceae). A high-quality chromosome-level genome sequence (903 Mb) was first assembled for S. tetraptera with 31,359 protein-coding genes annotated. Two rounds of recent independent whole-genome duplication (WGD) were revealed. Numerous genes from the recent species-specific WGD were found to be differentially expressed in the two types of flowers, and this may have helped contribute to the origin of this innovative trait. The genes with contrasting expressions between flowers were related to biosynthesis of hormones, floral pigments (carotenoids and flavonoids) and iridoid compounds, which are involved in both flower development and colour. Metabolomic analyses similarly suggested differential concentrations of these chemicals in the two types of flowers. The expression interactions between multiple genes may together lead to contrasting morphology and chemical concentration and open versus closed pollination of the dimorphic flowers in this species for reproductive assurance.
科研通智能强力驱动
Strongly Powered by AbleSci AI