ShieldFL: Mitigating Model Poisoning Attacks in Privacy-Preserving Federated Learning

计算机科学 计算机安全 加密 同态加密 稳健性(进化) 对手 密码学 人工智能 理论计算机科学 生物化学 基因 化学
作者
Zhuoran Ma,Jianfeng Ma,Yinbin Miao,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 1639-1654 被引量:83
标识
DOI:10.1109/tifs.2022.3169918
摘要

Privacy-Preserving Federated Learning (PPFL) is an emerging secure distributed learning paradigm that aggregates user-trained local gradients into a federated model through a cryptographic protocol. Unfortunately, PPFL is vulnerable to model poisoning attacks launched by a Byzantine adversary, who crafts malicious local gradients to harm the accuracy of the federated model. To resist model poisoning attacks, existing defense strategies focus on identifying suspicious local gradients over plaintexts. However, the Byzantine adversary submits encrypted poisonous gradients to circumvent existing defense strategies in PPFL, resulting in encrypted model poisoning. To address the issue, in this paper we design a privacy-preserving defense strategy using two-trapdoor homomorphic encryption (referred to as ShieldFL), which can resist encrypted model poisoning without compromising privacy in PPFL. Specially, we first present the secure cosine similarity method aiming to measure the distance between two encrypted gradients. Then, we propose the Byzantine-tolerance aggregation using cosine similarity, which can achieve robustness for both Independently Identically Distribution (IID) and non-IID data. Extensive evaluations on three benchmark datasets ( i.e., MNIST, KDDCup99, and Amazon) show that ShieldFL outperforms existing defense strategies. Especially, ShieldFL can achieve 30%-80% accuracy improvement to defend two state-of-the-art model poisoning attacks in both non-IID and IID settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助章鱼gie采纳,获得10
刚刚
Ade阿德发布了新的文献求助20
刚刚
山木完成签到,获得积分10
1秒前
科研通AI2S应助宋兽兽采纳,获得30
2秒前
2秒前
充电宝应助咿呀采纳,获得10
2秒前
daliu完成签到,获得积分10
2秒前
liu发布了新的文献求助10
3秒前
YY完成签到,获得积分10
4秒前
5秒前
5秒前
wyn完成签到,获得积分10
6秒前
8秒前
8秒前
9秒前
因几发布了新的文献求助10
9秒前
9秒前
9秒前
Meng完成签到 ,获得积分10
10秒前
完美世界应助yyds采纳,获得30
10秒前
10秒前
共享精神应助tangz采纳,获得10
11秒前
11秒前
折镜发布了新的文献求助10
11秒前
小林发布了新的文献求助100
13秒前
默默的璎完成签到,获得积分10
13秒前
宋兽兽完成签到,获得积分20
13秒前
迅速文龙发布了新的文献求助10
13秒前
章鱼gie完成签到,获得积分10
14秒前
爆米花应助杨杨采纳,获得10
14秒前
14秒前
英姑应助努力退休小博士采纳,获得10
15秒前
偏偏海发布了新的文献求助10
15秒前
faye完成签到,获得积分10
15秒前
xiaozhao完成签到,获得积分10
16秒前
章鱼gie发布了新的文献求助10
17秒前
中午饭完成签到,获得积分10
18秒前
579完成签到 ,获得积分20
19秒前
Akashi发布了新的文献求助10
19秒前
机械腾完成签到,获得积分10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230648
求助须知:如何正确求助?哪些是违规求助? 2877989
关于积分的说明 8203876
捐赠科研通 2545415
什么是DOI,文献DOI怎么找? 1375075
科研通“疑难数据库(出版商)”最低求助积分说明 647255
邀请新用户注册赠送积分活动 622324