ShieldFL: Mitigating Model Poisoning Attacks in Privacy-Preserving Federated Learning

计算机科学 计算机安全 加密 同态加密 稳健性(进化) 对手 密码学 人工智能 理论计算机科学 生物化学 基因 化学
作者
Zhuoran Ma,Jianfeng Ma,Yinbin Miao,Yingjiu Li,Robert H. Deng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 1639-1654 被引量:141
标识
DOI:10.1109/tifs.2022.3169918
摘要

Privacy-Preserving Federated Learning (PPFL) is an emerging secure distributed learning paradigm that aggregates user-trained local gradients into a federated model through a cryptographic protocol. Unfortunately, PPFL is vulnerable to model poisoning attacks launched by a Byzantine adversary, who crafts malicious local gradients to harm the accuracy of the federated model. To resist model poisoning attacks, existing defense strategies focus on identifying suspicious local gradients over plaintexts. However, the Byzantine adversary submits encrypted poisonous gradients to circumvent existing defense strategies in PPFL, resulting in encrypted model poisoning. To address the issue, in this paper we design a privacy-preserving defense strategy using two-trapdoor homomorphic encryption (referred to as ShieldFL), which can resist encrypted model poisoning without compromising privacy in PPFL. Specially, we first present the secure cosine similarity method aiming to measure the distance between two encrypted gradients. Then, we propose the Byzantine-tolerance aggregation using cosine similarity, which can achieve robustness for both Independently Identically Distribution (IID) and non-IID data. Extensive evaluations on three benchmark datasets ( i.e., MNIST, KDDCup99, and Amazon) show that ShieldFL outperforms existing defense strategies. Especially, ShieldFL can achieve 30%-80% accuracy improvement to defend two state-of-the-art model poisoning attacks in both non-IID and IID settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Square完成签到,获得积分10
刚刚
要减肥的凝琴完成签到,获得积分10
刚刚
英俊延恶发布了新的文献求助30
刚刚
log发布了新的文献求助10
1秒前
干净秋尽发布了新的文献求助10
2秒前
在水一方应助温婉的绮琴采纳,获得10
2秒前
小马甲应助fdsdvczx采纳,获得10
2秒前
LRJ发布了新的文献求助10
3秒前
田様应助SY1005采纳,获得10
3秒前
4秒前
4秒前
fieri完成签到,获得积分20
4秒前
852应助诚心的以寒采纳,获得10
4秒前
乐乐应助nh采纳,获得30
4秒前
VDC应助SunnyYim采纳,获得30
6秒前
6秒前
lzx完成签到,获得积分10
7秒前
7秒前
7秒前
草莓熊发布了新的文献求助10
8秒前
Lucas应助小福星饼干采纳,获得10
8秒前
bean完成签到 ,获得积分10
9秒前
彭彭完成签到,获得积分10
9秒前
追寻的天真完成签到,获得积分10
10秒前
11秒前
思源应助lzq采纳,获得10
12秒前
12秒前
小二郎应助123456采纳,获得10
12秒前
天天快乐应助Allen采纳,获得10
12秒前
司纤户羽完成签到,获得积分10
13秒前
结实的三颜完成签到,获得积分20
13秒前
13秒前
lhy完成签到,获得积分20
14秒前
14秒前
15秒前
LYJ发布了新的文献求助20
15秒前
zhangpeipei完成签到,获得积分10
17秒前
FashionBoy应助三番又六次采纳,获得10
17秒前
爆米花应助Tsuki采纳,获得10
17秒前
fdsdvczx完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454