Global Plus Local Jointly Regularized Support Vector Data Description for Novelty Detection

支持向量机 新知识检测 离群值 异常检测 计算机科学 模式识别(心理学) 熵(时间箭头) 数据挖掘 人工智能 数学 高光谱成像
作者
Wenjun Hu,Tianjie Hu,Yuzhen Wei,Jungang Lou,Shitong Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
被引量:1
标识
DOI:10.1109/tnnls.2021.3129321
摘要

In many practice application, the cost for acquiring abnormal data is quite expensive, thus the one-class classification (OCC) problem attracts great attention. As one of the solutions, support vector data description (SVDD) gains a continuous focus in outlier detection since it is based on the data description. For the sphere obtained by SVDD, both the center and the volume (or radius) strongly depend on the support vectors, while the support vectors are sensitive to the tradeoff parameter C. Hence, how to select this parameter is a rather challenging problem. In order to address this problem, we define several distance metrics relative to the image region in Gaussian kernel space. With the distance metrics, two probability densities relative to the global region and the local region are designed, respectively. Then, the information quantity and the information entropy are developed for regularizing the tradeoff parameter. This novel SVDD is called global plus local jointly regularized support vector data description (GL-SVDD), in which both the global region information and the local image region information jointly penalize the images as possible outliers. Finally, we use the UCI dataset and the hyperspectral data of cherry fruit to evaluate the performance of several OCC approaches. Experimental results show that GL-SVDD is encouraging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
斜对角的苍白完成签到,获得积分10
1秒前
TT完成签到,获得积分10
1秒前
斯文败类应助常归尘采纳,获得10
2秒前
3秒前
自信的雪糕完成签到,获得积分10
4秒前
复杂含灵完成签到,获得积分10
4秒前
5秒前
不爱吃韭菜完成签到 ,获得积分10
5秒前
AA完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
TT发布了新的文献求助10
8秒前
9秒前
徐小发布了新的文献求助10
10秒前
11秒前
Shylie完成签到,获得积分10
11秒前
复杂含灵发布了新的文献求助10
12秒前
13秒前
14秒前
16秒前
万能图书馆应助徐小采纳,获得10
16秒前
17秒前
18秒前
19秒前
AA关注了科研通微信公众号
20秒前
咖啡先生发布了新的文献求助10
21秒前
ccc完成签到 ,获得积分10
21秒前
25秒前
25秒前
hero3发布了新的文献求助10
26秒前
31秒前
小羊发布了新的文献求助10
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517