Global Plus Local Jointly Regularized Support Vector Data Description for Novelty Detection

支持向量机 新知识检测 离群值 异常检测 计算机科学 模式识别(心理学) 熵(时间箭头) 数据挖掘 人工智能 数学 高光谱成像
作者
Wenjun Hu,Tianjie Hu,Yuzhen Wei,Jungang Lou,Shitong Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
被引量:1
标识
DOI:10.1109/tnnls.2021.3129321
摘要

In many practice application, the cost for acquiring abnormal data is quite expensive, thus the one-class classification (OCC) problem attracts great attention. As one of the solutions, support vector data description (SVDD) gains a continuous focus in outlier detection since it is based on the data description. For the sphere obtained by SVDD, both the center and the volume (or radius) strongly depend on the support vectors, while the support vectors are sensitive to the tradeoff parameter C. Hence, how to select this parameter is a rather challenging problem. In order to address this problem, we define several distance metrics relative to the image region in Gaussian kernel space. With the distance metrics, two probability densities relative to the global region and the local region are designed, respectively. Then, the information quantity and the information entropy are developed for regularizing the tradeoff parameter. This novel SVDD is called global plus local jointly regularized support vector data description (GL-SVDD), in which both the global region information and the local image region information jointly penalize the images as possible outliers. Finally, we use the UCI dataset and the hyperspectral data of cherry fruit to evaluate the performance of several OCC approaches. Experimental results show that GL-SVDD is encouraging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66应助马佳凯采纳,获得10
1秒前
林溪完成签到,获得积分10
1秒前
Amber应助CTX采纳,获得10
1秒前
lan完成签到 ,获得积分10
1秒前
共享精神应助Elaine采纳,获得10
3秒前
3秒前
安静一曲完成签到 ,获得积分10
3秒前
4秒前
完美世界应助嘎嘎顺利采纳,获得10
4秒前
崔靥完成签到,获得积分10
4秒前
5秒前
阿敏关注了科研通微信公众号
5秒前
一只绒可可完成签到,获得积分10
5秒前
CBY完成签到,获得积分10
5秒前
5秒前
QYPANG完成签到,获得积分10
6秒前
子时月完成签到,获得积分10
7秒前
脑洞疼应助xlx采纳,获得10
7秒前
jym完成签到,获得积分10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
今后应助乐观的一一采纳,获得10
8秒前
开朗向真完成签到,获得积分10
8秒前
8秒前
奋斗映寒发布了新的文献求助10
8秒前
梓榆发布了新的文献求助10
8秒前
帅气的沧海完成签到 ,获得积分10
8秒前
9秒前
FashionBoy应助包容的幻梅采纳,获得10
9秒前
9秒前
qaq完成签到,获得积分10
9秒前
9秒前
voyager完成签到,获得积分10
9秒前
勇敢肥猫发布了新的文献求助10
10秒前
YA发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
orixero应助玉yu采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740