An electrochemical nitrogen reduction reaction (NRR) under mild conditions offers a promising alternative to the traditional Haber–Bosch process in converting abundant nitrogen (N2) to high value-added ammonia (NH3). In this work, iron phthalocyanine (FePc) was homogeneously immobilized on pyridine-functionalized carbon nanotubes to form a well-tuned electrocatalyst with an FeN5 active center (FePc-Py-CNT). Synchrotron X-ray absorption and Fourier transform infrared spectroscopy proved the presence of an Fe–N coordination bond between FePc and surface-bound pyridine. The resulting hybrid exhibited notably enhanced electrocatalytic NRR performance compared to FePc immobilized on CNTs based on π–π stacking interactions (FePc-CNT), resulting in doubled NH3 yield (21.7 μg mgcat–1 h–1) and Faradaic efficiency (22.2%). Theoretical calculations revealed that the axial coordination on FePc resulted in partial electron transfer from iron to pyridine, which efficiently suppresses the adsorption of H+ and improves the chemisorption of N2 at Fe sites. Meanwhile, the interfacial electron transfer was facilitated by pyridine as an electron transfer relay between FePc and CNTs. This work provides a unique strategy for the design of highly efficient NRR electrocatalysts at the molecular level.