Weakly supervised brain tumor segmentation via semantic affinity deep neural network

计算机科学 人工智能 深度学习 分割 边距(机器学习) 人工神经网络 二元分类 模式识别(心理学) 编码器 机器学习 支持向量机 操作系统
作者
Moshe Yerachmiel,Hayit Greenspan
标识
DOI:10.1117/12.2612775
摘要

Image segmentation tasks are considered resource intensive. These tasks require domain specialists to labor manually over long periods of time. When considering medical image segmentation tasks, the personnel and the error margin make these tasks expensive. Therefore there is a need for an automated tool. Deep learning has fast become the state of the art for such tasks, yet the methods applied require large data-sets of fully annotated examples. The need for supervision prevents researchers from developing deep learning and machine learning solutions on new datasets, which were not annotated by professional personnel. In this paper we utilize weak supervision to train a deep neural network to perform instance segmentation. The data used for this project is the Multimodal Brain Tumor Segmentation Challenge 3D MRI scans. The method used is a two-step DNN. The first step is binary classification of slices to either pathological or healthy. This is the only step which uses supervision for the training of the DNNs. In the second step, another DNN in the form of a Unet encoder-decoder network is utilized. This network encodes the input raw data and decodes each pixel to a 32 dimensional vector representing a semantic identity (semantic map). The supervision for training this second network is derived from the GradCAM of the classification DNN. Lastly, to segment the input data we determine the semantic distance between suspected lesion points and the entirety of the map. We achieve an average Dice score of 0.73 over three test sets of 38 patients each.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
adazbd发布了新的文献求助10
刚刚
Jenny应助木头人采纳,获得10
刚刚
ATAYA完成签到,获得积分10
1秒前
1秒前
畏寒的北发布了新的文献求助10
1秒前
1秒前
2秒前
地下室没有鬼完成签到 ,获得积分10
2秒前
whh123完成签到 ,获得积分10
2秒前
天天快乐应助空禅yew采纳,获得10
3秒前
在水一方应助开心采纳,获得10
4秒前
Akim应助王w采纳,获得10
4秒前
towerman发布了新的文献求助10
4秒前
畅快平蓝完成签到,获得积分10
4秒前
大棒槌发布了新的文献求助10
5秒前
5秒前
Ann完成签到,获得积分10
5秒前
今今发布了新的文献求助10
6秒前
123123完成签到 ,获得积分10
6秒前
SciGPT应助伊酒采纳,获得10
7秒前
何糖发布了新的文献求助10
8秒前
ding应助SEV采纳,获得10
8秒前
田様应助csq采纳,获得10
8秒前
dafwfwaf发布了新的文献求助10
8秒前
8秒前
景别完成签到,获得积分10
9秒前
彭于晏应助zhappy采纳,获得20
9秒前
10秒前
xg发布了新的文献求助10
10秒前
11秒前
Tophet完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
FashionBoy应助落落采纳,获得10
13秒前
活力的青枫完成签到 ,获得积分10
13秒前
苏素肃发布了新的文献求助10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808