Analysis methods of coronary artery intravascular images: A review

血管内超声 冠状动脉疾病 深度学习 人工智能 光学相干层析成像 计算机科学 医学 动脉 管腔(解剖学) 分割 放射科 心脏病学 内科学
作者
Chenxi Huang,Jian Wang,Qiang Xie,Yudong Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:489: 27-39 被引量:4
标识
DOI:10.1016/j.neucom.2021.10.124
摘要

Coronary artery disease is among one of the diseases human suffer most. Intravascular coronary arterial image analysis consists of denoising, segmentation, detection, and three-dimensional reconstruction, having a significant meaning for auxiliary diagnosis and treatment of coronary artery disease. Intravascular ultrasound (IVUS) and intravascular optical coherence tomography (IVOCT) are the two most commonly applied intravascular coronary arterial imaging techniques. Based on these fundamental imaging techniques, in recent years, many advanced technologies from traditional machine learning algorithms to deep learning methods were employed in the analysis of intravascular coronary arterial images and made huge progress in this field. In this survey, we reviewed more than one hundred papers published in top journals or conferences such as Neural Networks and MICCAI. These papers proposed approaches or schemes for the intravascular coronary arterial image analysis, including lumen border segmentation, atherosclerotic plaque characterization, media-adventitia segmentation, stent strut detection, and three-dimensional reconstruction. Our survey began with introducing coronary artery intravascular imaging techniques, essential neural networks, and deep learning and then presented an across-the-board review of methods, applications, and trends of intravascular image analysis. This survey is more comprehensive than other articles not only for its scope and reference number but also for discussing the future direction in this field. Compared to other review papers in this field, this article could assist beginners in constructing a basic knowledge frame of coronary artery intravascular image analysis methods and brought state-of-the-art progress in this field to fellow researchers. We hope this paper could benefit either the beginners for coronary arterial image analysis or experienced researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234发布了新的文献求助10
刚刚
yt完成签到,获得积分10
1秒前
1秒前
1秒前
zwy1216完成签到,获得积分10
2秒前
2秒前
李爱国应助闪闪采梦采纳,获得10
2秒前
Maple完成签到,获得积分10
2秒前
荼柒完成签到,获得积分10
2秒前
Y_完成签到,获得积分10
2秒前
3秒前
852应助畅快的向松采纳,获得10
3秒前
3秒前
缓慢的熠彤完成签到,获得积分10
4秒前
4秒前
4秒前
轻松的冥王星完成签到,获得积分10
5秒前
laura发布了新的文献求助10
6秒前
任然发布了新的文献求助10
6秒前
7秒前
缺粥发布了新的文献求助10
7秒前
clearlove发布了新的文献求助10
8秒前
8秒前
脑洞疼应助1234采纳,获得10
8秒前
9秒前
1234发布了新的文献求助10
9秒前
9秒前
sjb发布了新的文献求助10
9秒前
孝顺的丹寒完成签到,获得积分10
9秒前
10秒前
李健应助成就小懒虫采纳,获得10
10秒前
陈洋_复旦大学完成签到,获得积分10
10秒前
11秒前
11秒前
faded发布了新的文献求助10
11秒前
大个应助滴滴滴采纳,获得10
11秒前
12秒前
YUYUYU应助专一的幻儿采纳,获得10
12秒前
yyyyyuuuuu发布了新的文献求助10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A technique for the measurement of attitudes 500
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148683
求助须知:如何正确求助?哪些是违规求助? 2799722
关于积分的说明 7836622
捐赠科研通 2457168
什么是DOI,文献DOI怎么找? 1307779
科研通“疑难数据库(出版商)”最低求助积分说明 628265
版权声明 601663