氢氧化物
化学
吸附
朗缪尔吸附模型
水溶液
水溶液中的金属离子
氧化物
吸热过程
无机化学
金属氢氧化物
化学工程
纳米复合材料
金属
有机化学
工程类
作者
Katabathini Narasimharao,Lakshmi Prasanna Lingamdinne,Shaeel A. Al‐Thabaiti,Mohamed Mokhtar,Abdulmohsen Alsheshri,Sulaiman Alfaifi,Yoon‐Young Chang,Janardhan Reddy Koduru
标识
DOI:10.1016/j.jwpe.2022.102746
摘要
Heavy metal pollution in water is a major concern due to its bioaccumulation, non-biodegradability, and high toxicity. Long-term cadmium (Cd(II)) ion exposure could have an adverse impact on human health. Because, natural water bodies contain Cd(II) pollution at low concentrations, the treatment of Cd(II)-polluted water should be treated as micro-polluted water. It is critical to develop an effective water purification procedure to remove Cd(II) from micro-polluted water. In the present research, MgFe binary layered hydroxide/graphene oxide (MgFe LDH/GO) nanocomposite was synthesized, characterized and used for efficient Cd(II) adsorption. The adsorption process was investigated in terms of pH influence, kinetic behavior, isotherm equilibrium curves, and estimation of thermodynamic parameters. The characterization results showed that MgFe LDH/GO, which is composed of crystalline MgFe binary hydroxide and amorphous GO structures, has a considerable surface area (223 m2/g) and has a plate-like hexagonal structure with even forms and lamellar aggregates. Cd(II) adsorption was favoured on the MgFe LDH/GO surface in neutral circumstances at 25 °C. The pseudo-second-order kinetic behavior was adequately described, although the isotherm equilibrium curves fitted the Langmuir isotherm, with a high maximum uptake capacity of 174.83 mg/g. Chemisorption-controlled spontaneous and endothermic reactions occurred, which was confirmed by thermodynamic studies. Further, the surface interaction mechanism was investigated using the XPS analysis of spent catalyst. The MgFe LDH/GO nanocomposite is efficient to treat Cd(II) with a removal percentage of 99%. It can be reused more than four times without losing its original capacity and stability. Overall, the MgFe LDH/GO nanocomposite exhibited high potential to be utilized as an adsorbent for the removal of pollutants from actual contaminated water samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI