Infrared Image Small-Target Detection Based on Improved FCOS and Spatio-Temporal Features

计算机科学 红外线的 人工智能 像素 计算机视觉 目标检测 模式识别(心理学) 图像(数学) 光学 物理
作者
Shengbo Yao,Qiuyu Zhu,Tao Zhang,Wennan Cui,Peimin Yan
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (6): 933-933 被引量:27
标识
DOI:10.3390/electronics11060933
摘要

The research of infrared image small-target detection is of great significance to security monitoring, satellite remote sensing, infrared early warning, and precision guidance systems. However, small infrared targets occupy few pixels and lack color and texture features, which make the detection of small infrared targets extremely challenging. This paper proposes an effective single-stage infrared small-target detection method based on improved FCOS (Fully Convolutional One-Stage Object Detection) and spatio-temporal features. In view of the simple features of infrared small targets and the requirement of real-time detection, based on the standard FCOS network, we propose a lightweight network model combined with traditional filtering methods, whose response for small infrared targets is enhanced, and the background response is suppressed. At the same time, in order to eliminate the influence of static noise points in the infrared image on the detection of small infrared targets, time domain features are added to the improved FCOS network in the form of image sequences, so that the network can learn the spatio-temporal correlation features in the image sequence. Finally, compared with current typical infrared small-target detection methods, the comparative experiments show that the improved FCOS method proposed in this paper had better detection accuracy and real-time performance for infrared small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每念至此完成签到,获得积分10
刚刚
spike发布了新的文献求助10
1秒前
明理半山发布了新的文献求助20
1秒前
任全强发布了新的文献求助10
1秒前
2秒前
半夏完成签到,获得积分10
2秒前
王九八发布了新的文献求助10
2秒前
泡芙发布了新的文献求助10
3秒前
FashionBoy应助ysw采纳,获得10
3秒前
4秒前
linmo发布了新的文献求助10
5秒前
steven发布了新的文献求助10
5秒前
SciGPT应助大猫采纳,获得10
5秒前
完美世界应助song采纳,获得10
6秒前
极度发布了新的文献求助10
6秒前
利物鸟贝拉完成签到,获得积分10
6秒前
Speague完成签到,获得积分10
7秒前
桐桐应助山晴采纳,获得10
7秒前
HCT发布了新的文献求助10
8秒前
Akim应助FANTA采纳,获得50
8秒前
张俊发布了新的文献求助10
9秒前
9秒前
leibo1994发布了新的文献求助10
10秒前
10秒前
10秒前
AJIN发布了新的文献求助10
11秒前
LR完成签到,获得积分10
13秒前
13秒前
13秒前
YiWei发布了新的文献求助10
14秒前
14秒前
ln发布了新的文献求助10
15秒前
自然的南露完成签到 ,获得积分10
16秒前
刘丽蓓发布了新的文献求助10
17秒前
17秒前
小药师发布了新的文献求助10
17秒前
18秒前
思源应助mof采纳,获得10
19秒前
19秒前
远不止这些完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352