已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Computer Vision Approach for Estimating Lifting Load Contributors to Injury Risk

卷积神经网络 计算机科学 自感劳累评分 人工智能 机器学习 人工神经网络 医学 心率 血压 放射科
作者
Guoyang Zhou,Vaneet Aggarwal,Ming Yin,Denny Yu
出处
期刊:IEEE Transactions on Human-Machine Systems [Institute of Electrical and Electronics Engineers]
卷期号:52 (2): 207-219 被引量:9
标识
DOI:10.1109/thms.2022.3148339
摘要

Safety practitioners widely use the lifting index (LI) to determine workers’ lifting risk but are hampered by the difficulties of estimating the lifting load without intervention or intrusive sensors. This study proposes a computer vision method for estimating the LI across varying lifting loads. The proposed method can also predict the Brog rating of perceived exertion (RPE), a measure associated with the lifting load. A controlled lifting experiment was conducted to demonstrate the approach. Thirty participants performed 2176 lifting tasks at three LI levels. These levels were controlled by varying the lifting load and fixing other task variables (e.g., the lifting distance). The proposed method combined the pose estimation (OpenPose) and the optical flow estimation (SelFlow) techniques for extracting the participants’ body motion and posture features; a facial expression recognition algorithm (OpenFace) built upon the facial action unit coding system (FACS) was used to extract the participants’ facial features. The extracted features were combined and used to develop prediction models. The best-performing model was an integration of the 1-D convolutional neural network and the long short-term memory network. It achieved an area under curve of 0.890 in classifying the LI and a root mean square of 2.264 in predicting the participants’ RPE. Critical indicators were identified by investigating the contribution of the features through interpretable machine learning techniques. In summary, this study demonstrates a nonintrusive method for lifting risk assessment and discovers behavioral indicators that predict changes in the LI and RPE due to varying loads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山发布了新的文献求助10
1秒前
二丫完成签到,获得积分10
6秒前
浓浓的淡淡完成签到 ,获得积分10
8秒前
Silieze完成签到,获得积分10
9秒前
火山完成签到,获得积分10
10秒前
12秒前
小二郎应助科研民工采纳,获得10
14秒前
16秒前
慕青应助虔三愿采纳,获得10
18秒前
zhang完成签到 ,获得积分10
19秒前
zzz发布了新的文献求助10
21秒前
22秒前
13654135090完成签到,获得积分10
24秒前
累啊完成签到,获得积分10
26秒前
28秒前
duduwind完成签到,获得积分10
31秒前
KK发布了新的文献求助10
31秒前
31秒前
Jasper应助zzz采纳,获得10
33秒前
34秒前
34秒前
领导范儿应助duduwind采纳,获得10
34秒前
ZhaoPeng完成签到,获得积分10
34秒前
36秒前
lanxinyue应助轮胎配方采纳,获得10
37秒前
小张同学完成签到 ,获得积分10
39秒前
虔三愿发布了新的文献求助10
39秒前
39秒前
41秒前
Tumumu完成签到,获得积分10
43秒前
yu发布了新的文献求助10
46秒前
缥缈冷亦完成签到,获得积分10
47秒前
51秒前
小二郎应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
醉倒天瓢完成签到 ,获得积分10
58秒前
glj完成签到 ,获得积分10
1分钟前
心灵美大侠完成签到,获得积分10
1分钟前
1分钟前
zzz完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154783
求助须知:如何正确求助?哪些是违规求助? 2805656
关于积分的说明 7865443
捐赠科研通 2463783
什么是DOI,文献DOI怎么找? 1311609
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832