Structural and superconducting properties of ultrathin PbBi3 films fabricated at low temperature

材料科学 超导电性 退火(玻璃) 扫描隧道显微镜 凝聚态物理 拓扑绝缘体 合金 转变温度 周期表 纳米技术 复合材料 冶金 物理 量子力学
作者
None 王巨丰,None 田明阳,None 杜宏健,None 马传许,None 王兵
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
被引量:1
标识
DOI:10.7498/aps.71.20220050
摘要

Bismuth (Bi), as the stable heaviest element in the periodic table of elements, has strong spin-orbit coupling, which has attracted a lot attention as the parent material of various known topological insulators. Previous calculations predicted that Bi(111) with a thickness of less than eight bilayers and the ultrathin black-phosphorus-like Bi(110) films were single-element two-dimensional (2D) topological insulators. However, it is generally believed that these crystalline bismuth phases are either non-superconductive or with quite low transition temperature (0.5 mK). Since lead (Pb) is a good superconducting elementary material and there is a relatively small radius difference between the Bi and Pb atoms, they can be mixed to form superconducting alloys with any ratios, according to the Hume-Rothery rule. One may thus expect to form crystalline Bi based superconductors by Pb substitution, which might host intriguing topological superconductivities. While our previous work has demonstrated a low-temperature stable Pb1-xBix (x~0.1) alloy phase in which Pb in the Pb(111) structure is partially replaced by Bi, the Bi crystalline structure-based phases of the superconducting alloys still lack in-depth research. Here, we report a new low-temperature phase of Pb-Bi alloy thin films, namely PbBi3, on the Si(111)-(7×7) substrate, by co-depositing Pb and Bi at a low temperature of about 100 K followed by an annealing treatment of 200 K for 2 h. Using low-temperature scanning tunneling microscopy and spectroscopy (STM/STS), we in situ characterize the surface structure and superconducting properties of the Pb-Bi alloy films with a nominal thickness of about 4.8 nm. Two spatially separated phases with quasi-tetragonal structures are observed in the surface of the Pb-Bi alloy films, which can be identified as the pure Bi(110) phase and the PbBi3 phase, based on their distinct atomic structures, step heights and STS spectra. The PbBi3 film has a base structure similar to Bi(110), where about 25% of the Bi atoms are replaced by Pb, and the surface shows a root2×root2R45° reconstructed structure. The superconducting behavior of the PbBi3 phase is characterized by the STS spectra. The superconducting transition temperature is about 6.13 K, determined by the variable-temperature measurements. The corresponding ratio of 2Delta(0)/kBTc is about 4.62 with the superconducting gap Delta(0)=1.22 meV at 0 K, suggesting that PbBi3 is a strong coupling superconductor. By measuring the magnetic field dependent superconducting coherence lengths, we obtain that the upper critical field is larger than 0.92 T. We further investigate the superconducting proximity effect in the normal metal-superconductor (N-S) heterojunctions consisting of the non-superconducting Bi(110) and the superconducting PbBi3 domains. The N-S heterojunctions with both in-plane and step-like configurations are measured, which suggest that the atomic connection and the area of the quasi-2D Josephson junctions and the external magnetic field can affect the lateral superconducting penetration lengths. We also observe the zero-bias conductance peaks (ZBCPs) in the superconducting gap of the PbBi3 surfaces in some cases at zero magnetic field. By measuring dI/dV spectra at variable temperatures and by adopting a superconducting Nb tip, we identify that the ZBCPs are originated from the superconductor-insulator-superconductor (S-I-S) junction formed between a superconducting tip and the sample, Nevertheless, the Bi(110)-based PbBi3 phase may provide a possible platform to explore the intriguing topological superconducting behaviors by further examining the behaviors at the vortexes under magnetic fields, or in the vicinity of the potentially topological superconducting Bi(110) islands by considering the proximity effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
Bethune124完成签到 ,获得积分10
3秒前
song完成签到,获得积分10
4秒前
5秒前
柯凌发布了新的文献求助10
5秒前
6秒前
6秒前
srtw7ryyes完成签到 ,获得积分10
7秒前
Evelyn完成签到,获得积分20
7秒前
林歌ovo发布了新的文献求助10
7秒前
HaHa完成签到,获得积分10
7秒前
wx2360ouc完成签到 ,获得积分10
10秒前
HaHa发布了新的文献求助10
12秒前
Akim应助戴小夫采纳,获得10
12秒前
橙光完成签到,获得积分10
13秒前
14秒前
haocheng完成签到,获得积分10
20秒前
21秒前
23秒前
23秒前
monicaj完成签到 ,获得积分10
24秒前
爆米花应助小陈住垃圾桶采纳,获得10
25秒前
小呆呆完成签到,获得积分10
25秒前
小崎发布了新的文献求助10
26秒前
fireking_sid完成签到,获得积分10
26秒前
26秒前
27秒前
月军发布了新的文献求助10
28秒前
30秒前
GU发布了新的文献求助10
30秒前
大个应助转圈晕倒采纳,获得10
31秒前
务实饼干完成签到,获得积分10
33秒前
123完成签到,获得积分10
33秒前
33秒前
星辰大海应助奔奔采纳,获得10
33秒前
34秒前
nixx发布了新的文献求助10
35秒前
CipherSage应助曾经天德采纳,获得20
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079