Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chenshasha完成签到,获得积分10
刚刚
深情的水桃完成签到,获得积分10
刚刚
hahacsw完成签到,获得积分10
1秒前
King完成签到,获得积分20
1秒前
溫蒂完成签到,获得积分10
1秒前
mm发布了新的文献求助10
1秒前
NULL完成签到,获得积分10
1秒前
彬彬发布了新的文献求助10
1秒前
在水一方应助ddsyg126采纳,获得10
2秒前
zjx发布了新的文献求助10
2秒前
未来可期发布了新的文献求助10
2秒前
鲤鱼遥应助CC采纳,获得10
3秒前
3秒前
girl完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
zbw发布了新的文献求助10
4秒前
cyf完成签到,获得积分10
4秒前
5秒前
李锐完成签到,获得积分10
5秒前
上好佳发布了新的文献求助10
5秒前
Owen应助幸福绿柏采纳,获得10
5秒前
李某发布了新的文献求助10
5秒前
好吃的小米完成签到,获得积分10
7秒前
ani完成签到,获得积分10
7秒前
田様应助velsaber采纳,获得30
7秒前
呆萌的书桃完成签到,获得积分10
7秒前
8秒前
水谷隆也完成签到 ,获得积分10
8秒前
SMZ完成签到,获得积分10
8秒前
8秒前
9秒前
听风挽完成签到 ,获得积分10
9秒前
9秒前
叫小杨就好完成签到 ,获得积分10
10秒前
10秒前
10秒前
斯文败类应助默默问晴采纳,获得10
11秒前
英姑应助彬彬采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494