已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
刚刚
1秒前
1秒前
孙翘楚完成签到,获得积分10
3秒前
5秒前
Ming Chen发布了新的文献求助10
6秒前
yeah发布了新的文献求助10
7秒前
10秒前
11秒前
11秒前
顾末完成签到,获得积分10
11秒前
林艾祎发布了新的文献求助10
12秒前
小明应助handsomecat采纳,获得10
12秒前
英勇的沉鱼完成签到 ,获得积分10
12秒前
牧歌完成签到 ,获得积分0
14秒前
卡西诺玛完成签到,获得积分10
14秒前
Chen发布了新的文献求助10
16秒前
大意的鹤发布了新的文献求助10
17秒前
Ming Chen完成签到,获得积分10
17秒前
18秒前
Criminology34应助贝贝采纳,获得10
18秒前
19秒前
哈哈哈完成签到 ,获得积分10
20秒前
20秒前
20秒前
浮游应助郭子仪采纳,获得10
21秒前
合适尔蝶发布了新的文献求助10
21秒前
22秒前
22秒前
善学以致用应助Yas采纳,获得10
23秒前
搜集达人应助忧心的花瓣采纳,获得10
24秒前
深情安青应助handsomecat采纳,获得10
25秒前
CC柚完成签到 ,获得积分10
25秒前
红毛兔完成签到 ,获得积分10
26秒前
26秒前
27秒前
林艾祎完成签到,获得积分20
27秒前
好的完成签到 ,获得积分10
27秒前
Aintzane完成签到,获得积分10
30秒前
所所应助科研通管家采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719