亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
笨笨完成签到,获得积分10
12秒前
24秒前
27秒前
思源应助嘿嘿嘿侦探社采纳,获得10
37秒前
50秒前
56秒前
1分钟前
gyh发布了新的文献求助10
1分钟前
孤独的涵柳完成签到 ,获得积分10
1分钟前
1分钟前
gyh完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
搜集达人应助喜欢对你笑采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
老石完成签到 ,获得积分10
5分钟前
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
火星上向珊完成签到,获得积分10
6分钟前
6分钟前
wdxx发布了新的文献求助30
6分钟前
liufan完成签到 ,获得积分10
7分钟前
lmplzzp完成签到,获得积分10
7分钟前
橙子味的邱憨憨完成签到 ,获得积分10
7分钟前
杪夏二八完成签到 ,获得积分10
7分钟前
wdxx完成签到,获得积分10
7分钟前
649981108发布了新的文献求助10
8分钟前
8分钟前
649981108完成签到,获得积分10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167214
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638