已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助优秀的莞采纳,获得10
刚刚
zhang发布了新的文献求助10
2秒前
cssfsa发布了新的文献求助30
5秒前
打打应助lyx采纳,获得10
7秒前
7秒前
7秒前
10秒前
10秒前
田梦瑶完成签到,获得积分10
11秒前
xy发布了新的文献求助10
12秒前
优秀的莞发布了新的文献求助10
13秒前
15秒前
大方的依霜完成签到,获得积分10
15秒前
淡定访枫完成签到,获得积分20
16秒前
17秒前
Uu完成签到 ,获得积分10
18秒前
NexusExplorer应助自然的乌龟采纳,获得10
19秒前
20秒前
于雷是我发布了新的文献求助10
23秒前
优秀的莞完成签到,获得积分10
23秒前
24秒前
26秒前
蔡小娜完成签到,获得积分20
28秒前
28秒前
WMR发布了新的文献求助10
29秒前
29秒前
蔡小娜发布了新的文献求助10
32秒前
33秒前
34秒前
叽里呱啦完成签到 ,获得积分10
34秒前
ZOE应助clientprogram采纳,获得30
35秒前
35秒前
浮游应助paulmichael采纳,获得10
36秒前
芝士奶酪完成签到 ,获得积分10
36秒前
kimi发布了新的文献求助10
38秒前
Xieyusen发布了新的文献求助10
40秒前
ybheart发布了新的文献求助10
40秒前
左耳钉应助火羊宝采纳,获得10
41秒前
41秒前
kaili完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426055
求助须知:如何正确求助?哪些是违规求助? 4539751
关于积分的说明 14170500
捐赠科研通 4457568
什么是DOI,文献DOI怎么找? 2444607
邀请新用户注册赠送积分活动 1435561
关于科研通互助平台的介绍 1412983