Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wing完成签到 ,获得积分10
3秒前
yulia完成签到 ,获得积分10
5秒前
wrc2333完成签到 ,获得积分10
9秒前
David完成签到,获得积分10
10秒前
嘚儿塔完成签到 ,获得积分10
10秒前
俏皮元珊完成签到 ,获得积分10
11秒前
Ludi完成签到 ,获得积分10
18秒前
皮皮完成签到 ,获得积分10
20秒前
GLF完成签到 ,获得积分10
23秒前
26秒前
28秒前
Roy完成签到,获得积分10
28秒前
碧蓝的机器猫完成签到 ,获得积分10
32秒前
朱婷完成签到 ,获得积分10
35秒前
35秒前
文静灵阳完成签到 ,获得积分10
37秒前
mzrrong完成签到 ,获得积分10
40秒前
Young完成签到 ,获得积分10
47秒前
小螃蟹完成签到 ,获得积分10
48秒前
jreamy完成签到 ,获得积分10
51秒前
砸瓦鲁多发布了新的文献求助10
51秒前
57秒前
薏仁完成签到 ,获得积分10
58秒前
CarterXD完成签到,获得积分10
59秒前
小白完成签到 ,获得积分10
59秒前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
Leonard_Canon发布了新的文献求助10
1分钟前
even完成签到 ,获得积分10
1分钟前
stop here完成签到,获得积分10
1分钟前
1分钟前
狂野乌冬面完成签到 ,获得积分10
1分钟前
科研通AI6应助砸瓦鲁多采纳,获得10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
潇洒冰蓝完成签到,获得积分10
1分钟前
was_3完成签到,获得积分0
1分钟前
吃饱再睡完成签到 ,获得积分10
1分钟前
CipherSage应助Tinadai123456采纳,获得10
1分钟前
wangji_2017完成签到,获得积分10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570402
求助须知:如何正确求助?哪些是违规求助? 3992030
关于积分的说明 12356635
捐赠科研通 3664690
什么是DOI,文献DOI怎么找? 2019675
邀请新用户注册赠送积分活动 1054099
科研通“疑难数据库(出版商)”最低求助积分说明 941674