已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
哈哈给哈哈的求助进行了留言
刚刚
刚刚
模拟卷发布了新的文献求助10
1秒前
汪旺完成签到 ,获得积分10
1秒前
1秒前
完美世界应助昆1231231231采纳,获得10
2秒前
3秒前
罗帅帅发布了新的文献求助50
4秒前
LYZ发布了新的文献求助10
4秒前
5秒前
6秒前
Seven完成签到 ,获得积分10
6秒前
仁怡完成签到 ,获得积分10
7秒前
大贺呀完成签到,获得积分10
8秒前
ace发布了新的文献求助10
9秒前
cc完成签到,获得积分20
9秒前
汉堡包应助模拟卷采纳,获得30
10秒前
Willow完成签到,获得积分10
14秒前
14秒前
对3药不起发布了新的文献求助10
14秒前
英姑应助娜娜采纳,获得10
15秒前
ccm应助123采纳,获得30
15秒前
小马甲应助123采纳,获得30
15秒前
舒心的小刺猬完成签到,获得积分10
16秒前
16秒前
lwm不想看文献完成签到 ,获得积分10
17秒前
模拟卷完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
顾矜应助LYZ采纳,获得10
22秒前
zrk发布了新的文献求助10
22秒前
23秒前
嘎嘣脆的桃儿完成签到,获得积分10
23秒前
Junsir发布了新的文献求助10
23秒前
乐辰发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345203
求助须知:如何正确求助?哪些是违规求助? 4480262
关于积分的说明 13945786
捐赠科研通 4377612
什么是DOI,文献DOI怎么找? 2405382
邀请新用户注册赠送积分活动 1397974
关于科研通互助平台的介绍 1370340