已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyb完成签到 ,获得积分10
2秒前
qwt发布了新的文献求助10
4秒前
健壮的花瓣完成签到 ,获得积分10
4秒前
leungsukmui完成签到,获得积分10
4秒前
Jason完成签到 ,获得积分10
4秒前
木子完成签到,获得积分10
5秒前
怕黑面包完成签到 ,获得积分10
7秒前
孙尧芳完成签到 ,获得积分10
7秒前
BPATIENT完成签到 ,获得积分10
10秒前
11秒前
上官若男应助qwt采纳,获得10
11秒前
14秒前
zhangyk发布了新的文献求助10
15秒前
魄罗bro发布了新的文献求助10
21秒前
22秒前
26秒前
bxhcs完成签到,获得积分10
30秒前
zhangyk完成签到,获得积分10
32秒前
HansStone完成签到,获得积分10
33秒前
oldblack完成签到,获得积分10
35秒前
LONG完成签到 ,获得积分10
36秒前
matrixu完成签到,获得积分10
37秒前
beiwei完成签到 ,获得积分10
40秒前
三点半完成签到 ,获得积分10
46秒前
852应助bxhcs采纳,获得10
49秒前
哎健身完成签到 ,获得积分10
49秒前
格物完成签到,获得积分10
51秒前
CCC完成签到 ,获得积分10
53秒前
Mark完成签到 ,获得积分10
57秒前
Chaos完成签到,获得积分10
59秒前
1分钟前
yf完成签到,获得积分10
1分钟前
九九完成签到,获得积分10
1分钟前
WILAY889发布了新的文献求助10
1分钟前
陈补天完成签到 ,获得积分10
1分钟前
参也完成签到 ,获得积分10
1分钟前
狼人完成签到,获得积分10
1分钟前
1分钟前
dadadsad完成签到,获得积分10
1分钟前
汉堡包应助Yuyukoaii采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534114
求助须知:如何正确求助?哪些是违规求助? 4622235
关于积分的说明 14582010
捐赠科研通 4562343
什么是DOI,文献DOI怎么找? 2500106
邀请新用户注册赠送积分活动 1479665
关于科研通互助平台的介绍 1450782