Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
Hello应助可靠月亮采纳,获得10
1秒前
doufly完成签到,获得积分10
1秒前
努力向上的小刘完成签到,获得积分10
1秒前
1秒前
1秒前
英姑应助Boxcc采纳,获得10
1秒前
Fuao完成签到,获得积分10
2秒前
niceday123发布了新的文献求助10
2秒前
乐乐应助啊鹏鹏采纳,获得10
2秒前
2秒前
elsa622发布了新的文献求助10
3秒前
Ava应助张耘硕采纳,获得10
3秒前
550255发布了新的文献求助10
3秒前
replica完成签到,获得积分10
3秒前
脑洞疼应助Mimi采纳,获得10
4秒前
沉默的莞发布了新的文献求助10
4秒前
doctor163发布了新的文献求助10
4秒前
xxx完成签到,获得积分10
5秒前
roly100发布了新的文献求助10
5秒前
木木完成签到,获得积分10
5秒前
NIHAO完成签到 ,获得积分10
5秒前
5秒前
6秒前
小刘发布了新的文献求助10
6秒前
zz关闭了zz文献求助
7秒前
bubibubi发布了新的文献求助10
7秒前
宁灭龙发布了新的文献求助10
7秒前
7秒前
我是老大应助敏感的铃铛采纳,获得10
7秒前
7秒前
久伴完成签到 ,获得积分10
9秒前
善学以致用应助zhenghongdan采纳,获得10
9秒前
科研通AI6应助YH采纳,获得10
10秒前
10秒前
西湖完成签到,获得积分10
10秒前
11秒前
histhb完成签到,获得积分10
11秒前
天天完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261422
求助须知:如何正确求助?哪些是违规求助? 4422535
关于积分的说明 13766643
捐赠科研通 4297013
什么是DOI,文献DOI怎么找? 2357641
邀请新用户注册赠送积分活动 1354024
关于科研通互助平台的介绍 1315182