Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SaSa发布了新的文献求助10
刚刚
ly发布了新的文献求助10
1秒前
1秒前
1秒前
miu完成签到,获得积分10
2秒前
星辰大海应助岳元满采纳,获得10
2秒前
李爱国应助Georges-09采纳,获得10
3秒前
3秒前
6秒前
领导范儿应助MoonByMoon采纳,获得10
6秒前
zcxxxxxxx完成签到,获得积分10
6秒前
728发布了新的文献求助10
6秒前
7秒前
7秒前
阎梦凡完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Sense发布了新的文献求助10
8秒前
浮游应助light采纳,获得10
8秒前
浮游应助老实的愫采纳,获得10
9秒前
9秒前
胖豆完成签到,获得积分10
9秒前
10秒前
11秒前
zhenglingying完成签到 ,获得积分10
12秒前
蓝天发布了新的文献求助10
12秒前
赘婿应助kimoki采纳,获得10
12秒前
诚心盼海发布了新的文献求助10
12秒前
危机的雪旋完成签到,获得积分10
13秒前
13秒前
脑洞疼应助威武白桃采纳,获得10
13秒前
SciGPT应助中中采纳,获得10
14秒前
14秒前
Hevesy完成签到,获得积分10
15秒前
我是老大应助社团活动采纳,获得10
15秒前
一颗咸蛋黄完成签到 ,获得积分10
15秒前
15秒前
慕青应助gravity采纳,获得10
16秒前
杨小冬发布了新的文献求助10
16秒前
17秒前
先林完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909