Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
花椒泡茶完成签到 ,获得积分10
4秒前
FashionBoy应助K先生采纳,获得10
6秒前
XX完成签到,获得积分10
6秒前
受伤的可愁完成签到 ,获得积分10
6秒前
梓榆发布了新的文献求助20
6秒前
脑洞疼应助肥波采纳,获得10
9秒前
JUll发布了新的文献求助30
9秒前
10秒前
天雨流芳发布了新的文献求助10
10秒前
12秒前
轻松悒完成签到,获得积分10
12秒前
dxtmm发布了新的文献求助10
12秒前
zsp发布了新的文献求助10
13秒前
吱吱吱吱完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助sldelibra采纳,获得10
13秒前
吃猫的鱼发布了新的文献求助10
14秒前
15秒前
张欣宇发布了新的文献求助10
15秒前
15秒前
16秒前
WGL_team发布了新的文献求助10
16秒前
18秒前
ding应助肥波采纳,获得10
19秒前
20秒前
沧浪发布了新的文献求助10
21秒前
zhuling发布了新的文献求助10
22秒前
蓝若曦发布了新的文献求助10
22秒前
LCQ发布了新的文献求助10
22秒前
yucj发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
何江海完成签到 ,获得积分10
25秒前
天雨流芳完成签到,获得积分10
26秒前
共享精神应助艾斯比采纳,获得10
26秒前
26秒前
26秒前
K先生发布了新的文献求助10
27秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384576
求助须知:如何正确求助?哪些是违规求助? 4507385
关于积分的说明 14027832
捐赠科研通 4417056
什么是DOI,文献DOI怎么找? 2426235
邀请新用户注册赠送积分活动 1419055
关于科研通互助平台的介绍 1397371