已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two‐stage‐neighborhood‐based multilabel classification for incomplete data with missing labels

缺少数据 模式识别(心理学) 特征(语言学) 人工智能 相似性(几何) 计算机科学 数据挖掘 模糊逻辑 功能(生物学) 核(代数) 数学 机器学习 图像(数学) 语言学 进化生物学 生物 组合数学 哲学
作者
Lin Sun,Tianxiang Wang,Weiping Ding,Jiucheng Xu,Anhui Tan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (10): 6773-6810 被引量:19
标识
DOI:10.1002/int.22861
摘要

In recent years, it has been difficult for multilabel classification to obtain complete multilabel data in real-world applications, and even a large number of labels for training samples are randomly missed. As a result, the classification task of incomplete multilabel data with missing labels faces formidable challenges. This paper presents a two-stage-neighborhood-based multilabel classification method for incomplete data with missing labels in neighborhood decision systems. First, to solve the problem of selecting the neighborhood radius manually, as well as balancing the samples in the neighborhood, the neighborhood radius based on the feature distribution function is defined, and the differences and similarities between samples through the identifiable and indiscernible matrices are, respectively, computed. Then, a restoration method for missing feature values is proposed for use in the first stage. Second, to consider the nonlinear relationship among features, a neighborhood-based fuzzy similarity relationship between samples is investigated based on the Gaussian kernel function. By integrating the fuzzy similarity relationship matrix, label-specific feature matrix, and label correlation matrix, an objective function based on the regression model is presented, the optimal solutions to the label-specific feature and label correlation matrices based on the gradient descent strategy are provided, and a new multilabel classification method with missing labels is developed during the second stage. Finally, two-stage multilabel classification algorithms are designed. Experiments on 18 multilabel data sets demonstrate that our designed algorithms are effective not only for recovering missing feature values, but also for improving the classification performance of data with missing labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
riccixuu完成签到 ,获得积分10
刚刚
无花果应助杨小洋采纳,获得10
1秒前
云汐发布了新的文献求助10
1秒前
6昂完成签到,获得积分10
1秒前
汤汤完成签到 ,获得积分10
2秒前
4秒前
good发布了新的文献求助10
4秒前
天凉王破完成签到 ,获得积分10
6秒前
小债完成签到 ,获得积分10
7秒前
池haojie发布了新的文献求助10
10秒前
DrCuiTianjin完成签到 ,获得积分0
10秒前
云汐完成签到,获得积分10
12秒前
13秒前
zzzy完成签到 ,获得积分10
13秒前
pK完成签到 ,获得积分10
13秒前
鱼羊明完成签到 ,获得积分10
14秒前
sopha发布了新的文献求助10
17秒前
22秒前
yiyao完成签到 ,获得积分10
23秒前
无花果应助bobo1129采纳,获得10
23秒前
顾矜应助拼搏的白玉采纳,获得10
26秒前
王艳完成签到 ,获得积分10
27秒前
ding应助chen采纳,获得20
27秒前
31秒前
李付清完成签到 ,获得积分10
34秒前
35秒前
背后的若之完成签到 ,获得积分10
37秒前
37秒前
Orange应助闪闪的熠彤采纳,获得10
37秒前
yb716发布了新的文献求助10
37秒前
38秒前
LY0430完成签到 ,获得积分10
42秒前
震千筹完成签到,获得积分10
43秒前
44秒前
疯院士完成签到,获得积分10
44秒前
无辜的惜寒完成签到 ,获得积分10
46秒前
谭文完成签到 ,获得积分10
47秒前
48秒前
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432027
求助须知:如何正确求助?哪些是违规求助? 4544781
关于积分的说明 14194087
捐赠科研通 4464004
什么是DOI,文献DOI怎么找? 2446934
邀请新用户注册赠送积分活动 1438258
关于科研通互助平台的介绍 1415046