Characterising metabolomic signatures of lipid-modifying therapies through drug target mendelian randomisation

生物 孟德尔随机化 代谢组 计算生物学 药物靶点 孟德尔遗传 药品 代谢组学 生物信息学 药物发现 遗传学 药理学 基因型 基因 遗传变异
作者
Tom G. Richardson,Genevieve M Leyden,Qin Wang,Joshua A. Bell,Benjamin Elsworth,George Davey Smith,Michael V. Holmes
出处
期刊:PLOS Biology [Public Library of Science]
卷期号:20 (2): e3001547-e3001547 被引量:179
标识
DOI:10.1371/journal.pbio.3001547
摘要

Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到,获得积分10
1秒前
勤奋的凌香完成签到,获得积分10
3秒前
3秒前
周杰完成签到,获得积分10
4秒前
4秒前
Akim应助雪流星采纳,获得10
4秒前
李健的小迷弟应助雪流星采纳,获得10
4秒前
Akim应助雪流星采纳,获得10
4秒前
酷波er应助雪流星采纳,获得10
4秒前
研友_VZG7GZ应助雪流星采纳,获得10
5秒前
思源应助雪流星采纳,获得10
5秒前
小蘑菇应助雪流星采纳,获得10
5秒前
小蘑菇应助雪流星采纳,获得10
5秒前
共享精神应助雪流星采纳,获得10
5秒前
小二郎应助雪流星采纳,获得10
5秒前
善学以致用应助大马猴采纳,获得10
5秒前
小蘑菇应助wergou采纳,获得10
5秒前
7秒前
7秒前
7秒前
ll完成签到,获得积分10
9秒前
猪猪hero应助诗尾采纳,获得10
9秒前
冲冲冲完成签到,获得积分10
9秒前
科研通AI5应助初夏采纳,获得10
9秒前
江知之完成签到 ,获得积分0
10秒前
WT发布了新的文献求助10
11秒前
Joshua完成签到,获得积分10
11秒前
香蕉觅云应助和尘同光采纳,获得10
11秒前
静之一帘幽梦0225完成签到,获得积分10
12秒前
mmmm完成签到,获得积分10
12秒前
14秒前
王先生完成签到 ,获得积分10
14秒前
嘁嘁完成签到 ,获得积分10
15秒前
Gang完成签到,获得积分10
15秒前
科研通AI5应助moon采纳,获得10
16秒前
16秒前
科目三应助冲冲冲采纳,获得30
17秒前
17秒前
过过关注了科研通微信公众号
18秒前
CXY完成签到,获得积分10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736925
求助须知:如何正确求助?哪些是违规求助? 3280839
关于积分的说明 10021396
捐赠科研通 2997494
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782085
科研通“疑难数据库(出版商)”最低求助积分说明 749707