Lithium Intercalation Mechanism and Critical Role of Structural Water in Layered H2V3O8 High-Capacity Cathode Material for Lithium-Ion Batteries

插层(化学) 锂(药物) 阴极 材料科学 离子 价(化学) 电化学 密度泛函理论 中子衍射 晶体结构 结晶学 无机化学 化学 物理化学 计算化学 内分泌学 医学 有机化学 电极
作者
A. Kuhn,Juan Carlos Pérez‐Flores,Jesús Prado‐Gonjal,E. Morán,Markus Hoelzel,V. Diez–Gómez,Isabel Sobrados,J. Sanz,F. Garcı́a-Alvarado
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (2): 694-705 被引量:12
标识
DOI:10.1021/acs.chemmater.1c03283
摘要

H2V3O8 (HVO) is a promising high-capacity cathode material for lithium-ion batteries (LIBs). It allows reversible two-electron transfer during electrochemical lithium cycling processes, yielding a very attractive theoretical capacity of 378 mAh g–1. While an abundant number of research works exclusively proved the outstanding electrochemical lithium storage properties of H2V3O8, structural changes during the intercalation process have not been scrutinized, and the crystallographic positions occupied by the guest species have not been revealed yet. However, an in-depth understanding of structural changes of cathode materials is essential for developing new materials and improving current materials. Aimed at providing insights into the storage behavior of HVO, in this work, we employed a combination of high-resolution synchrotron X-ray and neutron diffraction to accurately describe the crystal structures of both pristine and lithiated H2V3O8. In HVO, hydrogen is located on one single-crystallographic site in a waterlike arrangement, through which bent asymmetric hydrogen bonds across adjacent V3O82– chains are established. The role played by water in network stabilization was further examined by density functional theory (DFT) calculations. Easy hydrogen-bonding switch of structural water upon lithium intercalation not only allows better accommodation of intercalated lithium ions but also enhances Li-ion mobility in the crystal host, as evidenced by magic-angle spinning (MAS) NMR spectroscopy. Facile conduction pathways for Li ions in the structure are deduced from bond valence sum difference mapping. The hydrogen bonds mitigate the volume expansion/contraction of vanadium layers during Li intercalation/deintercalation, resulting in improved long-term structural stability, explaining the excellent performance in rate capability and cycle life reported for this high-energy cathode in LIBs. This study suggests that many hydrated materials can be good candidates for electrode materials in not only implemented Li technology but also emerging rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
K. G.完成签到,获得积分10
1秒前
1秒前
1秒前
火日立发布了新的文献求助10
1秒前
1秒前
guhuihaozi关注了科研通微信公众号
2秒前
是滴是滴完成签到,获得积分10
2秒前
lingyan hu发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
荞麦面发布了新的文献求助10
3秒前
大妈完成签到,获得积分10
3秒前
青青科研发布了新的文献求助10
4秒前
Phoenix ZHANG完成签到,获得积分10
4秒前
hsy发布了新的文献求助10
5秒前
XXHH发布了新的文献求助10
5秒前
啵啵只因发布了新的文献求助10
5秒前
yangderder发布了新的文献求助10
5秒前
yuefeng发布了新的文献求助10
5秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
贰鸟应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
VDC应助科研通管家采纳,获得30
6秒前
搜集达人应助科研通管家采纳,获得30
6秒前
prosperp应助科研通管家采纳,获得10
6秒前
瓶盖儿完成签到,获得积分10
6秒前
瓜瓜乐完成签到,获得积分10
6秒前
小聂应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
vvvvyl应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
小菜鸟001应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319