Enhanced Radiative Efficiency of InGaAs/GaAsP Multiple Quantum Wells by Optimizing the Thickness of Interlayers

材料科学 辐射传输 光电子学 光致发光 量子效率 外延 量子阱 砷化铟镓 自发辐射 砷化镓 光学 纳米技术 图层(电子) 物理 激光器
作者
Maui Hino,Meita Asami,Kentaroh Watanabe,Yoshiaki Nakano,Masakazu Sugiyama
出处
期刊:Physica Status Solidi A-applications and Materials Science [Wiley]
卷期号:219 (4) 被引量:1
标识
DOI:10.1002/pssa.202100426
摘要

InGaAs/GaAsP multiple quantum wells (MQWs) are used in electronic devices because the high radiative efficiency of MQWs improves the device performance. To realize high radiative efficiency, a GaAs interlayer is inserted to decrease the defects at the heterointerface between the well and barrier of the MQWs. However, it is unclear how the interlayer thickness and insertion position affect the radiative efficiency of the MQWs. Herein, the influence of the GaAs interlayer thickness on the radiative efficiency by measuring the photoluminescence of MQWs with different interlayer thicknesses is investigated. A thicker GaAs interlayer below the InGaAs enhances the radiative efficiency. Moreover, the GaAs interlayer above the InGaAs must be thicker than ≈6 nm to enhance the radiative efficiency. The initial growth of GaAs above the InGaAs degrades the surface morphology, which may be associated with the carry‐over of indium on the InGaAs surface and may generate defects between the InGaAs and GaAsP layers. The surface of sufficiently thick GaAs interlayers has a flatter morphology and is free from the degradation of radiative efficiency. The results suggest inserting of interlayers with a smooth surface morphology between strained layers during epitaxial growth is an effective method to suppress nonradiative recombination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WZ0904发布了新的文献求助10
刚刚
刚刚
lab完成签到 ,获得积分0
刚刚
小蘑菇应助今今采纳,获得10
1秒前
CodeCraft应助秋之月采纳,获得10
1秒前
I1waml完成签到 ,获得积分10
1秒前
1秒前
guygun完成签到,获得积分10
1秒前
zho发布了新的文献求助10
2秒前
独特亦旋发布了新的文献求助10
2秒前
3秒前
研友_LOqqmZ完成签到,获得积分10
4秒前
4秒前
英俊的铭应助文献查找采纳,获得10
4秒前
solobang发布了新的文献求助10
4秒前
Jasper应助老迟到的书雁采纳,获得10
7秒前
orixero应助小二采纳,获得10
7秒前
8秒前
8秒前
simple完成签到,获得积分10
8秒前
caoyy发布了新的文献求助10
8秒前
赵小可可可可完成签到,获得积分10
10秒前
小萌发布了新的文献求助10
11秒前
weiv发布了新的文献求助10
11秒前
海科科发布了新的文献求助10
12秒前
陌上花完成签到,获得积分10
12秒前
我是站长才怪应助微笑襄采纳,获得10
13秒前
caoyy完成签到,获得积分10
14秒前
JamesPei应助独特亦旋采纳,获得10
15秒前
16秒前
16秒前
科目三应助Jenny采纳,获得50
18秒前
gry发布了新的文献求助10
19秒前
Hh发布了新的文献求助10
21秒前
Jzhang应助daniel采纳,获得10
21秒前
21秒前
夏夏发布了新的文献求助10
21秒前
jiesenya完成签到,获得积分10
23秒前
今后应助smile采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824