亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling nutrient removal by membrane bioreactor at a sewage treatment plant using machine learning models

缺氧水域 总悬浮物 悬浮物 营养物 环境科学 环境工程 多层感知器 化学需氧量 总溶解固体 生化需氧量 污水处理 化学 制浆造纸工业 废水 人工神经网络 计算机科学 环境化学 机器学习 工程类 有机化学
作者
Muhammad Yaqub,Wontae Lee
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:46: 102521-102521 被引量:45
标识
DOI:10.1016/j.jwpe.2021.102521
摘要

This study developed machine learning (ML) models to predict nutrient removal using an anaerobic-anoxic-oxic membrane bioreactor (A2O-MBR). An extreme gradient boosting (XGBoost) model was applied using a grid search strategy (Grid-XGBoost) to predict the removal of nutrients, including ammonium (NH4), total phosphorus (TP), and total nitrogen (TN). The models were validated against a commonly used multilayer perceptron (MLP) neural network. The input parameters were divided into operating conditions, including dissolved oxygen, oxidation-reduction potential, and mixed liquor suspended solids. These conditions were also partitioned based on influent characteristics such as NH4, TN, TP, total organic content, chemical oxygen demand, and suspended solids. A total of nine models were developed for each ML technique using the operating conditions and influent characteristics as separate datasets and combining them for each target nutrient. It was observed that using only operating conditions or influent characteristics as input parameters for XGBoost and MLP yielded poor results. Moreover, a significant improvement in the predictive efficacy of the model was observed when all parameters for the target nutrient removal predictions were considered. The prediction of NH4 by the XGBoost model had the highest R2 values of 0.763, 0.814, and 0.876 when the operating conditions, influent characteristics, and combined dataset were used as input parameters, respectively. Overall, the ensemble XGBoost model demonstrated better performance than the MLP model in all cases. However, the performance of both the models was found to be inadequate for predicting TN and TP removal in any scenario. The proposed XGBoost model is a reliable and robust ML technique for predicting NH4 removal, which may contribute to decision-making in advance to improve the efficacy of an A2O-MBR system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lijiauyi1994完成签到,获得积分10
2秒前
3秒前
矢思然完成签到,获得积分10
37秒前
45秒前
斯文败类应助精明晓刚采纳,获得10
49秒前
53秒前
无辜笑容发布了新的文献求助10
59秒前
1分钟前
大模型应助加绒采纳,获得30
1分钟前
精明晓刚发布了新的文献求助10
1分钟前
精明晓刚完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Yu完成签到,获得积分20
1分钟前
Yu发布了新的文献求助40
1分钟前
2分钟前
2分钟前
sfwrbh发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
archer01发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Maria完成签到,获得积分10
3分钟前
3分钟前
TS6539发布了新的文献求助10
4分钟前
TS6539完成签到,获得积分10
4分钟前
bababiba完成签到,获得积分10
4分钟前
4分钟前
CipherSage应助archer01采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264