Environmental Stochasticity

人口 生态学 消光(光学矿物学) 随机偏微分方程 随机建模 环境变化 人口模型 计量经济学 统计物理学 统计 微分方程 数学 生物 气候变化 物理 古生物学 数学分析 人口学 社会学
作者
Masami Fujiwara,Takenori Takada
标识
DOI:10.1002/9780470015902.a0021220.pub2
摘要

Abstract Environmental stochasticity refers to unpredictable spatiotemporal fluctuation in environmental conditions. The term is often used in the literature on ecology and evolution. Unpredictability is defined as an inability to predict the future state precisely such that only its distribution can be known. The environment is typically defined as any set of abiotic (e.g. temperature and nutrient availability) and biotic (e.g. predator, competitor and food) conditions that organisms experience. Environmental stochasticity influences how population abundance fluctuates and affects the fate (e.g. persistence or extinction) of populations. In an evolutionary timescale, environmental stochasticity also affects the life history strategy of organisms. Environmental stochasticity is included in population models using univariate difference equations, stochastic matrix population models, stochastic differential equations and partial differential equations. Ecological data are analysed to determine the effect of environmental stochasticity using methods such as spectral analysis, capture–recapture analysis, state‐space analysis, generalised linear models and multivariate statistical analyses. Key Concepts Environmental stochasticity is unpredictable spatiotemporal fluctuations in environmental conditions. Observed population dynamics consist of fluctuation due to environmental stochasticity, but it is often confounded with other factors such as observational errors, deterministic fluctuation and demographic stochasticity. Environmental stochasticity is reflected in the fluctuations in ecological processes and affects their fate (e.g. extinction or persistence of populations). Environmental stochasticity plays an important role in the evolution of life history strategies of organisms by affecting their fitness. Stochastic discrete‐time models, stochastic matrix population models, stochastic differential equation models and partial differential equation models are the four basic population models that include environmental stochasticity. Spectral analysis, state‐space model analysis, capture–recapture analysis, generalised linear models and multivariate statistical analysis are commonly used for separating the effects of environmental stochasticity in data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助ll采纳,获得10
3秒前
13秒前
14秒前
jctyp完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
ll发布了新的文献求助10
18秒前
左鞅完成签到 ,获得积分10
20秒前
胡萝卜完成签到 ,获得积分10
20秒前
FashionBoy应助jiangzong采纳,获得10
22秒前
ChatGPT完成签到,获得积分10
22秒前
Xiaojiu完成签到 ,获得积分10
26秒前
甘sir完成签到 ,获得积分10
27秒前
浮游应助Lny采纳,获得20
29秒前
30秒前
HiDasiy完成签到 ,获得积分10
30秒前
30秒前
sherry完成签到 ,获得积分10
32秒前
一味愚完成签到,获得积分10
33秒前
Eternity发布了新的文献求助10
36秒前
量子星尘发布了新的文献求助10
39秒前
现实的曼安完成签到 ,获得积分10
40秒前
yunt完成签到 ,获得积分10
47秒前
77完成签到,获得积分10
52秒前
CY完成签到,获得积分10
52秒前
鳗鱼忆山完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
57秒前
周全完成签到 ,获得积分10
1分钟前
czj完成签到 ,获得积分0
1分钟前
崩溃完成签到,获得积分10
1分钟前
1分钟前
怡心亭完成签到 ,获得积分10
1分钟前
正直的松鼠完成签到 ,获得积分10
1分钟前
lina完成签到 ,获得积分10
1分钟前
1分钟前
小呵点完成签到 ,获得积分10
1分钟前
肾宝完成签到,获得积分10
1分钟前
甜蜜的白桃完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
pjxxx完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432735
求助须知:如何正确求助?哪些是违规求助? 4545270
关于积分的说明 14195354
捐赠科研通 4464743
什么是DOI,文献DOI怎么找? 2447245
邀请新用户注册赠送积分活动 1438542
关于科研通互助平台的介绍 1415547