Environmental Stochasticity

人口 生态学 消光(光学矿物学) 随机偏微分方程 随机建模 环境变化 人口模型 计量经济学 统计物理学 统计 微分方程 数学 生物 气候变化 物理 古生物学 数学分析 人口学 社会学
作者
Masami Fujiwara,Takenori Takada
标识
DOI:10.1002/9780470015902.a0021220.pub2
摘要

Abstract Environmental stochasticity refers to unpredictable spatiotemporal fluctuation in environmental conditions. The term is often used in the literature on ecology and evolution. Unpredictability is defined as an inability to predict the future state precisely such that only its distribution can be known. The environment is typically defined as any set of abiotic (e.g. temperature and nutrient availability) and biotic (e.g. predator, competitor and food) conditions that organisms experience. Environmental stochasticity influences how population abundance fluctuates and affects the fate (e.g. persistence or extinction) of populations. In an evolutionary timescale, environmental stochasticity also affects the life history strategy of organisms. Environmental stochasticity is included in population models using univariate difference equations, stochastic matrix population models, stochastic differential equations and partial differential equations. Ecological data are analysed to determine the effect of environmental stochasticity using methods such as spectral analysis, capture–recapture analysis, state‐space analysis, generalised linear models and multivariate statistical analyses. Key Concepts Environmental stochasticity is unpredictable spatiotemporal fluctuations in environmental conditions. Observed population dynamics consist of fluctuation due to environmental stochasticity, but it is often confounded with other factors such as observational errors, deterministic fluctuation and demographic stochasticity. Environmental stochasticity is reflected in the fluctuations in ecological processes and affects their fate (e.g. extinction or persistence of populations). Environmental stochasticity plays an important role in the evolution of life history strategies of organisms by affecting their fitness. Stochastic discrete‐time models, stochastic matrix population models, stochastic differential equation models and partial differential equation models are the four basic population models that include environmental stochasticity. Spectral analysis, state‐space model analysis, capture–recapture analysis, generalised linear models and multivariate statistical analysis are commonly used for separating the effects of environmental stochasticity in data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆程文完成签到,获得积分10
刚刚
刚刚
霞俊杰完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
Awei完成签到,获得积分10
1秒前
天天快乐应助牛贝贝采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
BowieHuang应助Ymir采纳,获得40
3秒前
3秒前
NexusExplorer应助1101592875采纳,获得10
3秒前
付研琪发布了新的文献求助10
3秒前
花灯王子完成签到,获得积分10
4秒前
Lqian_Yu完成签到 ,获得积分10
4秒前
小葛发布了新的文献求助10
4秒前
Kevin发布了新的文献求助20
5秒前
lzx完成签到,获得积分10
5秒前
ZIS发布了新的文献求助10
5秒前
吴帅发布了新的文献求助10
5秒前
5秒前
5秒前
keyanrubbish发布了新的文献求助10
5秒前
tangshijun完成签到,获得积分10
6秒前
6秒前
6秒前
子车茗应助sober采纳,获得20
6秒前
6秒前
无疾而终完成签到,获得积分10
6秒前
Tdj完成签到,获得积分10
6秒前
白苹果完成签到 ,获得积分10
7秒前
天行完成签到,获得积分10
7秒前
爆米花应助666采纳,获得10
7秒前
8秒前
potatozhou完成签到,获得积分10
8秒前
8秒前
Harssi发布了新的文献求助10
8秒前
yunyii发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836