An improved deep learning-based algorithm for 3D reconstruction of vacuum arcs

算法 卷积神经网络 计算机科学 一般化 深度学习 相似性(几何) 迭代法 弧(几何) 迭代重建 重建算法 人工智能 图像(数学) 数学 几何学 数学分析
作者
Zhenxing Wang,Yangbo Pan,Wei Zhang,Haomin Li,Yingsan Geng,Jianhua Wang,Liqiong Sun
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (12) 被引量:4
标识
DOI:10.1063/5.0073209
摘要

Extensive attempts have been made to enable the application of deep learning to 3D plasma reconstruction. However, due to the limitation on the number of available training samples, deep learning-based methods have insufficient generalization ability compared to the traditional iterative methods. This paper proposes an improved algorithm named convolutional neural network-maximum likelihood expectation maximization-split-Bergman (CNN-MLEM-SB) based on the combination of the deep learning CNN and an iterative algorithm known as MLEM-SB. This method uses the prediction result of a CNN as the initial value and then corrects it using the MLEM-SB to obtain the final results. The proposed method is verified experimentally by reconstructing two types of vacuum arcs with and without transverse magnetic field (TMF) control. In addition, the CNN and the proposed algorithm are compared with respect to accuracy and generalization ability. The results show that the CNN can effectively reconstruct the arcs between a pair of disk contacts, which has specific distribution patterns: its structural similarity index measurement (SSIM) can reach 0.952. However, the SSIM decreases to 0.868 for the arc between a pair of TMF contacts, which is controlled by the TMF and has complex distribution patterns. Compared with the CNN reconstruction method, the proposed algorithm can achieve a higher reconstruction accuracy for any arc shape. Compared with the iterative algorithm, the proposed algorithm's reconstruction efficiency is higher by 38.24% and 35.36% for the vacuum arc between the disk and the TMF contacts, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1111发布了新的文献求助10
刚刚
单薄凌蝶完成签到,获得积分10
1秒前
1秒前
哄哄完成签到,获得积分10
1秒前
求知若渴完成签到,获得积分10
1秒前
ysf完成签到,获得积分10
2秒前
如意航空完成签到,获得积分10
3秒前
洛杉矶的奥斯卡完成签到,获得积分10
3秒前
yxy完成签到,获得积分10
3秒前
3秒前
Anoxia完成签到,获得积分10
4秒前
wangwenzhe完成签到,获得积分20
4秒前
KX完成签到,获得积分10
4秒前
意大利完成签到,获得积分10
4秒前
weiwei完成签到,获得积分10
4秒前
迟大猫应助波波采纳,获得10
4秒前
Rebekah完成签到,获得积分10
5秒前
躺平科研大叔完成签到,获得积分10
5秒前
无花果应助调皮冰旋采纳,获得10
5秒前
HU发布了新的文献求助10
5秒前
happyboy2008完成签到,获得积分10
5秒前
科研通AI5应助研友_8RlQ2n采纳,获得10
5秒前
Anoxia发布了新的文献求助30
6秒前
两酒窝完成签到,获得积分10
7秒前
七十三度完成签到,获得积分10
7秒前
7秒前
嘟嘟金子发布了新的文献求助10
8秒前
称心砖头发布了新的文献求助10
8秒前
8秒前
哈哈完成签到,获得积分10
9秒前
今后应助小宇采纳,获得10
9秒前
领导范儿应助Khr1stINK采纳,获得10
9秒前
汉堡包应助羊羊采纳,获得10
9秒前
KX发布了新的文献求助10
10秒前
落晨发布了新的文献求助10
10秒前
10秒前
geigeigei完成签到,获得积分10
10秒前
8564523发布了新的文献求助10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678