An improved deep learning-based algorithm for 3D reconstruction of vacuum arcs

算法 卷积神经网络 计算机科学 一般化 深度学习 相似性(几何) 迭代法 弧(几何) 迭代重建 重建算法 人工智能 图像(数学) 数学 几何学 数学分析
作者
Zhenxing Wang,Yangbo Pan,Wei Zhang,Haomin Li,Yingsan Geng,Jianhua Wang,Liqiong Sun
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (12) 被引量:4
标识
DOI:10.1063/5.0073209
摘要

Extensive attempts have been made to enable the application of deep learning to 3D plasma reconstruction. However, due to the limitation on the number of available training samples, deep learning-based methods have insufficient generalization ability compared to the traditional iterative methods. This paper proposes an improved algorithm named convolutional neural network-maximum likelihood expectation maximization-split-Bergman (CNN-MLEM-SB) based on the combination of the deep learning CNN and an iterative algorithm known as MLEM-SB. This method uses the prediction result of a CNN as the initial value and then corrects it using the MLEM-SB to obtain the final results. The proposed method is verified experimentally by reconstructing two types of vacuum arcs with and without transverse magnetic field (TMF) control. In addition, the CNN and the proposed algorithm are compared with respect to accuracy and generalization ability. The results show that the CNN can effectively reconstruct the arcs between a pair of disk contacts, which has specific distribution patterns: its structural similarity index measurement (SSIM) can reach 0.952. However, the SSIM decreases to 0.868 for the arc between a pair of TMF contacts, which is controlled by the TMF and has complex distribution patterns. Compared with the CNN reconstruction method, the proposed algorithm can achieve a higher reconstruction accuracy for any arc shape. Compared with the iterative algorithm, the proposed algorithm's reconstruction efficiency is higher by 38.24% and 35.36% for the vacuum arc between the disk and the TMF contacts, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助要增肥的樱采纳,获得10
1秒前
微笑笑萍完成签到,获得积分10
1秒前
lsy发布了新的文献求助10
1秒前
1秒前
寒月如雪发布了新的文献求助10
1秒前
2秒前
深情寻冬完成签到 ,获得积分10
2秒前
Leoniko发布了新的文献求助10
2秒前
ccc完成签到,获得积分10
2秒前
大个应助An采纳,获得10
2秒前
二柱子发布了新的文献求助10
3秒前
凌云发布了新的文献求助10
3秒前
3秒前
一二完成签到,获得积分20
4秒前
4秒前
5秒前
传奇3应助没有昵称奥采纳,获得10
5秒前
5秒前
6秒前
Ainhoa关注了科研通微信公众号
6秒前
sssshhh发布了新的文献求助10
6秒前
明理的凌旋完成签到,获得积分10
7秒前
7秒前
Lei发布了新的文献求助10
7秒前
STDRM发布了新的文献求助10
8秒前
8秒前
独孤幻月96应助王大爷采纳,获得10
8秒前
hdcf完成签到 ,获得积分10
8秒前
8秒前
8秒前
李晓龙完成签到,获得积分10
8秒前
完美世界应助不准吃烤肉采纳,获得10
9秒前
jj发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助20
9秒前
9秒前
烟花应助ljz910005采纳,获得10
9秒前
chenk发布了新的文献求助10
10秒前
ceo发布了新的文献求助10
10秒前
yy发布了新的文献求助30
10秒前
乐乐乐乐乐完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403