已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved deep learning-based algorithm for 3D reconstruction of vacuum arcs

算法 卷积神经网络 计算机科学 一般化 深度学习 相似性(几何) 迭代法 弧(几何) 迭代重建 重建算法 人工智能 图像(数学) 数学 几何学 数学分析
作者
Zhenxing Wang,Yangbo Pan,Wei Zhang,Haomin Li,Yingsan Geng,Jianhua Wang,Liqiong Sun
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (12) 被引量:4
标识
DOI:10.1063/5.0073209
摘要

Extensive attempts have been made to enable the application of deep learning to 3D plasma reconstruction. However, due to the limitation on the number of available training samples, deep learning-based methods have insufficient generalization ability compared to the traditional iterative methods. This paper proposes an improved algorithm named convolutional neural network-maximum likelihood expectation maximization-split-Bergman (CNN-MLEM-SB) based on the combination of the deep learning CNN and an iterative algorithm known as MLEM-SB. This method uses the prediction result of a CNN as the initial value and then corrects it using the MLEM-SB to obtain the final results. The proposed method is verified experimentally by reconstructing two types of vacuum arcs with and without transverse magnetic field (TMF) control. In addition, the CNN and the proposed algorithm are compared with respect to accuracy and generalization ability. The results show that the CNN can effectively reconstruct the arcs between a pair of disk contacts, which has specific distribution patterns: its structural similarity index measurement (SSIM) can reach 0.952. However, the SSIM decreases to 0.868 for the arc between a pair of TMF contacts, which is controlled by the TMF and has complex distribution patterns. Compared with the CNN reconstruction method, the proposed algorithm can achieve a higher reconstruction accuracy for any arc shape. Compared with the iterative algorithm, the proposed algorithm's reconstruction efficiency is higher by 38.24% and 35.36% for the vacuum arc between the disk and the TMF contacts, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助crisis采纳,获得10
1秒前
1秒前
1秒前
3秒前
高兴凡儿发布了新的文献求助10
3秒前
5秒前
zxxxxxx发布了新的文献求助10
5秒前
大方小白发布了新的文献求助10
5秒前
默默洋葱发布了新的文献求助10
7秒前
sky完成签到,获得积分10
9秒前
yunyueqixun发布了新的文献求助10
11秒前
llll完成签到,获得积分10
12秒前
柏林寒冬应助苏乘风采纳,获得10
12秒前
13秒前
14秒前
xiaobai完成签到,获得积分10
15秒前
ding应助科研通管家采纳,获得10
17秒前
打打应助高兴凡儿采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
coolkid应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
柯一一应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
andrele应助科研通管家采纳,获得10
17秒前
17秒前
祁尒完成签到,获得积分10
19秒前
19秒前
柯一一应助蓝天白云采纳,获得10
20秒前
鲤鱼鸽子应助蓝天白云采纳,获得10
20秒前
香蕉觅云应助蓝天白云采纳,获得10
20秒前
FashionBoy应助蓝天白云采纳,获得10
20秒前
田様应助蓝天白云采纳,获得10
20秒前
crisis发布了新的文献求助10
20秒前
大方小白完成签到,获得积分10
22秒前
24秒前
crisis完成签到,获得积分20
26秒前
28秒前
啦啦啦啦发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021