An improved deep learning-based algorithm for 3D reconstruction of vacuum arcs

算法 卷积神经网络 计算机科学 一般化 深度学习 相似性(几何) 迭代法 弧(几何) 迭代重建 重建算法 人工智能 图像(数学) 数学 几何学 数学分析
作者
Zhenxing Wang,Yangbo Pan,Wei Zhang,Haomin Li,Yingsan Geng,Jianhua Wang,Liqiong Sun
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:92 (12) 被引量:4
标识
DOI:10.1063/5.0073209
摘要

Extensive attempts have been made to enable the application of deep learning to 3D plasma reconstruction. However, due to the limitation on the number of available training samples, deep learning-based methods have insufficient generalization ability compared to the traditional iterative methods. This paper proposes an improved algorithm named convolutional neural network-maximum likelihood expectation maximization-split-Bergman (CNN-MLEM-SB) based on the combination of the deep learning CNN and an iterative algorithm known as MLEM-SB. This method uses the prediction result of a CNN as the initial value and then corrects it using the MLEM-SB to obtain the final results. The proposed method is verified experimentally by reconstructing two types of vacuum arcs with and without transverse magnetic field (TMF) control. In addition, the CNN and the proposed algorithm are compared with respect to accuracy and generalization ability. The results show that the CNN can effectively reconstruct the arcs between a pair of disk contacts, which has specific distribution patterns: its structural similarity index measurement (SSIM) can reach 0.952. However, the SSIM decreases to 0.868 for the arc between a pair of TMF contacts, which is controlled by the TMF and has complex distribution patterns. Compared with the CNN reconstruction method, the proposed algorithm can achieve a higher reconstruction accuracy for any arc shape. Compared with the iterative algorithm, the proposed algorithm's reconstruction efficiency is higher by 38.24% and 35.36% for the vacuum arc between the disk and the TMF contacts, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助qaz采纳,获得10
1秒前
2秒前
2秒前
端庄的香薇完成签到,获得积分10
3秒前
3秒前
云漫山完成签到 ,获得积分10
3秒前
叶帆完成签到,获得积分10
4秒前
桐桐应助3927456843采纳,获得30
4秒前
che发布了新的文献求助10
4秒前
共享精神应助MeetAgainLZH采纳,获得10
5秒前
5秒前
xing发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
5秒前
6秒前
欧贤书发布了新的文献求助10
6秒前
天天快乐应助Gryphon采纳,获得10
7秒前
粗犷的冷霜完成签到,获得积分10
8秒前
小马发布了新的文献求助10
9秒前
Sunny完成签到,获得积分10
9秒前
小满发布了新的文献求助10
9秒前
10秒前
11秒前
科目三应助董秋白采纳,获得10
11秒前
13秒前
asdfzxcv应助陶醉的梦露采纳,获得10
14秒前
14秒前
olivia发布了新的文献求助10
15秒前
16秒前
桃子发布了新的文献求助10
20秒前
Wudifairy完成签到,获得积分10
20秒前
xbx1991完成签到,获得积分10
21秒前
小满完成签到,获得积分10
22秒前
22秒前
23秒前
eryu25发布了新的文献求助10
24秒前
24秒前
欢喜的小天鹅完成签到 ,获得积分10
24秒前
传奇3应助HOMO采纳,获得10
25秒前
开心小狗完成签到,获得积分10
25秒前
ihuu发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704