纳米棒
双金属片
纳米材料基催化剂
乙二醇
催化作用
化学
纳米材料
纳米颗粒
化学工程
电催化剂
纳米技术
材料科学
电化学
物理化学
电极
有机化学
工程类
作者
Xichen Zhou,Yangbo Ma,Yiyao Ge,Shangqian Zhu,Yu Cui,Bo Chen,Lingwen Liao,Qinbai Yun,Zhen He,Huiwu Long,Lujiang Li,Biao Huang,Qinxin Luo,Li Zhai,Xixi Wang,Licheng Bai,Gang Wang,Zhiqiang Guan,Ye Chen,Chun‐Sing Lee
摘要
Controlled construction of bimetallic nanostructures with a well-defined heterophase is of great significance for developing highly efficient nanocatalysts and investigating the structure-dependent catalytic performance. Here, a wet-chemical synthesis method is used to prepare Au@Pd core-shell nanorods with a unique fcc-2H-fcc heterophase (fcc: face-centered cubic; 2H: hexagonal close-packed with a stacking sequence of "AB"). The obtained fcc-2H-fcc heterophase Au@Pd core-shell nanorods exhibit superior electrocatalytic ethanol oxidation performance with a mass activity as high as 6.82 A mgPd-1, which is 2.44, 6.96, and 6.43 times those of 2H-Pd nanoparticles, fcc-Pd nanoparticles, and commercial Pd/C, respectively. The operando infrared reflection absorption spectroscopy reveals a C2 pathway with fast reaction kinetics for the ethanol oxidation on the prepared heterophase Au@Pd nanorods. Our experimental results together with density functional theory calculations indicate that the enhanced performance of heterophase Au@Pd nanorods can be attributed to the unconventional 2H phase, the 2H/fcc phase boundary, and the lattice expansion of the Pd shell. Moreover, the heterophase Au@Pd nanorods can also serve as an efficient catalyst for the electrochemical oxidation of methanol, ethylene glycol, and glycerol. Our work in the area of phase engineering of nanomaterials (PENs) opens the way for developing high-performance electrocatalysts toward future practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI