Synthon-based ligand discovery in virtual libraries of over 11 billion compounds

化学空间 合成子 配体效率 化学图书馆 可扩展性 组合化学 化学 对接(动物) 虚拟筛选 小分子 计算机科学 计算生物学 药物发现 配体(生物化学) 立体化学 生物 数据库 生物化学 医学 护理部 受体
作者
Arman A. Sadybekov,Anastasiia Sadybekov,Yongfeng Liu,Christos Iliopoulos‐Tsoutsouvas,Xi‐Ping Huang,Julie E. Pickett,Blake Houser,Nilkanth Patel,Ngan K. Tran,Fei Tong,Nikolai Zvonok,Manish K. Jain,Olena Savych,Dmytro S. Radchenko,Spyros P. Nikas,Nicos A. Petasis,Yurii S. Moroz,Bryan L. Roth,Alexandros Makriyannis,Vsevolod Katritch
出处
期刊:Nature [Springer Nature]
卷期号:601 (7893): 452-459 被引量:399
标识
DOI:10.1038/s41586-021-04220-9
摘要

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1–4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach—V-SYNTHES—to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold–synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50–200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm. V-SYNTHES, a scalable and computationally cost-effective synthon-based approach to compound screening, identified compounds with a high affinity for CB2 and CB1 in a hierarchical structure-based screen of more than 11 billion compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠菜应助元欣采纳,获得200
刚刚
踏实修洁发布了新的文献求助10
1秒前
1秒前
3秒前
张伊洛发布了新的文献求助10
3秒前
3秒前
久旱逢甘霖完成签到 ,获得积分10
4秒前
5秒前
流星朵朵完成签到 ,获得积分10
5秒前
shinn发布了新的文献求助10
6秒前
赘婿应助大导师采纳,获得10
6秒前
姜萌萌完成签到,获得积分10
6秒前
Yangxiaohui发布了新的文献求助10
6秒前
笨笨静白完成签到,获得积分10
7秒前
江汛发布了新的文献求助10
8秒前
8秒前
香蕉晓曼发布了新的文献求助10
8秒前
10秒前
Jacob发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
12秒前
李爱国应助srue采纳,获得10
14秒前
整齐翠安发布了新的文献求助10
15秒前
所所应助香蕉晓曼采纳,获得10
15秒前
lily发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
NexusExplorer应助踏实修洁采纳,获得10
16秒前
木子完成签到 ,获得积分10
17秒前
YX发布了新的文献求助10
17秒前
17秒前
17秒前
163发布了新的文献求助10
17秒前
武雨寒发布了新的文献求助10
18秒前
科研通AI6.1应助lizhijign采纳,获得10
20秒前
Ronalsen完成签到 ,获得积分10
21秒前
聪慧的乐驹完成签到,获得积分10
21秒前
22秒前
净净岛发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778724
求助须知:如何正确求助?哪些是违规求助? 5643441
关于积分的说明 15450266
捐赠科研通 4910269
什么是DOI,文献DOI怎么找? 2642586
邀请新用户注册赠送积分活动 1590334
关于科研通互助平台的介绍 1544675