亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthon-based ligand discovery in virtual libraries of over 11 billion compounds

化学空间 合成子 配体效率 化学图书馆 可扩展性 组合化学 化学 对接(动物) 虚拟筛选 小分子 计算机科学 计算生物学 药物发现 配体(生物化学) 立体化学 生物 数据库 生物化学 医学 护理部 受体
作者
Arman Sadybekov,Anastasiia Sadybekov,Yongfeng Liu,Christos Iliopoulos‐Tsoutsouvas,Xi‐Ping Huang,Julie E. Pickett,Blake Houser,Nilkanth Patel,Ngan Tran,Fei Tong,Nikolai Zvonok,Manish K. Jain,Olena Savych,Dmytro S. Radchenko,Spyros P. Nikas,Nicos A. Petasis,Yurii S. Moroz,Bryan L. Roth,Alexandros Makriyannis,Vsevolod Katritch
出处
期刊:Nature [Nature Portfolio]
卷期号:601 (7893): 452-459 被引量:258
标识
DOI:10.1038/s41586-021-04220-9
摘要

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1–4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach—V-SYNTHES—to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold–synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50–200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm. V-SYNTHES, a scalable and computationally cost-effective synthon-based approach to compound screening, identified compounds with a high affinity for CB2 and CB1 in a hierarchical structure-based screen of more than 11 billion compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不秃燃的小老弟完成签到 ,获得积分10
7秒前
shiyang2014完成签到,获得积分10
11秒前
花花公子完成签到,获得积分10
17秒前
sola完成签到 ,获得积分10
19秒前
懒羊羊大王完成签到 ,获得积分10
23秒前
33秒前
欢呼的寻双完成签到,获得积分10
41秒前
Mollyshimmer完成签到 ,获得积分10
42秒前
SCIfafafafa发布了新的文献求助10
1分钟前
duxiao完成签到 ,获得积分10
2分钟前
情怀应助SCIfafafafa采纳,获得10
2分钟前
小六子完成签到,获得积分10
2分钟前
Lucas应助duxiao采纳,获得10
2分钟前
Aaron完成签到 ,获得积分0
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
Jasper应助hongtao采纳,获得10
3分钟前
3分钟前
JamesPei应助Fung采纳,获得10
3分钟前
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
4分钟前
qiu发布了新的文献求助10
4分钟前
顾矜应助狂发文章采纳,获得10
4分钟前
4分钟前
Djnsbj发布了新的文献求助10
4分钟前
4分钟前
狂发文章发布了新的文献求助10
4分钟前
4分钟前
寒冷苗条应助Djnsbj采纳,获得10
4分钟前
小蘑菇应助Djnsbj采纳,获得10
4分钟前
狂发文章完成签到,获得积分10
4分钟前
4分钟前
4分钟前
duxiao发布了新的文献求助10
4分钟前
hongtao发布了新的文献求助10
4分钟前
5分钟前
Mandy发布了新的文献求助10
5分钟前
我好想睡完成签到,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214