Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion

补语(音乐) 领域(数学分析) 计算机科学 建议(编程) 人工智能 风险厌恶(心理学) 心理学 认知心理学 机器学习 算法 社会心理学 经济 数学 数理经济学 基因 生物化学 表型 数学分析 化学 互补 程序设计语言 期望效用假设
作者
Ryan Allen,Prithwiraj Choudhury
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:33 (1): 149-169 被引量:135
标识
DOI:10.1287/orsc.2021.1554
摘要

Past research offers mixed perspectives on whether domain experience helps or hurts algorithm-augmented worker performance. Reconciling these perspectives, we theorize that intermediate levels of domain experience are optimal for algorithm-augmented performance, due to the interplay between two countervailing forces—ability and aversion. Although domain experience can increase performance via increased ability to complement algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance via increased aversion to accurate algorithmic advice. Because ability developed through learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent among experts, we theorize that algorithm-augmented performance will first rise with increasing domain experience, then fall. We test this by exploiting a within-subjects experiment in which corporate information technology support workers were assigned to resolve problems both manually and using an algorithmic tool. We confirm that the difference between performance with the algorithmic tool versus without the tool was characterized by an inverted U-shape over the range of domain experience. Only workers with moderate domain experience did significantly better using the algorithm than resolving tickets manually. These findings highlight that, even if greater domain experience increases workers’ ability to complement algorithms, domain experience can also trigger other mechanisms that overcome the positive ability effect and inhibit performance. Additional analyses and participant interviews suggest that, even though the highest experience workers had the greatest ability to complement the algorithmic tool, they rejected its advice because they felt greater accountability for possible unintended consequences of accepting algorithmic advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
1秒前
隐形曼青应助白鸽鸽采纳,获得30
3秒前
NO完成签到,获得积分10
3秒前
yingzg完成签到,获得积分20
4秒前
香蕉觅云应助很快发nature采纳,获得10
4秒前
Lyuoah发布了新的文献求助10
4秒前
受伤青枫发布了新的文献求助10
4秒前
Goblin完成签到 ,获得积分10
5秒前
6秒前
英仙座发布了新的文献求助10
6秒前
科研通AI6.1应助wuxunxun2015采纳,获得10
7秒前
8秒前
zhengts完成签到 ,获得积分10
8秒前
Akim应助小李采纳,获得10
9秒前
shouren完成签到,获得积分10
10秒前
Sirius完成签到,获得积分10
10秒前
搜集达人应助试遣愚忠采纳,获得10
11秒前
11秒前
Joyeee完成签到,获得积分20
12秒前
英仙座完成签到,获得积分10
13秒前
Felicity发布了新的文献求助10
13秒前
yingzg关注了科研通微信公众号
13秒前
一颗土豆发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
康康XY发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
16秒前
YD发布了新的文献求助10
17秒前
17秒前
17秒前
乐观小蕊完成签到 ,获得积分10
18秒前
18秒前
鲸鱼完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
20秒前
zmn0419完成签到,获得积分10
21秒前
小李发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742394
求助须知:如何正确求助?哪些是违规求助? 5408115
关于积分的说明 15344853
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625257
邀请新用户注册赠送积分活动 1574095
关于科研通互助平台的介绍 1531070