Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion

补语(音乐) 领域(数学分析) 计算机科学 建议(编程) 人工智能 风险厌恶(心理学) 心理学 认知心理学 机器学习 算法 社会心理学 经济 数学 数理经济学 基因 生物化学 表型 数学分析 化学 互补 程序设计语言 期望效用假设
作者
Ryan Allen,Prithwiraj Choudhury
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:33 (1): 149-169 被引量:60
标识
DOI:10.1287/orsc.2021.1554
摘要

Past research offers mixed perspectives on whether domain experience helps or hurts algorithm-augmented worker performance. Reconciling these perspectives, we theorize that intermediate levels of domain experience are optimal for algorithm-augmented performance, due to the interplay between two countervailing forces—ability and aversion. Although domain experience can increase performance via increased ability to complement algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance via increased aversion to accurate algorithmic advice. Because ability developed through learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent among experts, we theorize that algorithm-augmented performance will first rise with increasing domain experience, then fall. We test this by exploiting a within-subjects experiment in which corporate information technology support workers were assigned to resolve problems both manually and using an algorithmic tool. We confirm that the difference between performance with the algorithmic tool versus without the tool was characterized by an inverted U-shape over the range of domain experience. Only workers with moderate domain experience did significantly better using the algorithm than resolving tickets manually. These findings highlight that, even if greater domain experience increases workers’ ability to complement algorithms, domain experience can also trigger other mechanisms that overcome the positive ability effect and inhibit performance. Additional analyses and participant interviews suggest that, even though the highest experience workers had the greatest ability to complement the algorithmic tool, they rejected its advice because they felt greater accountability for possible unintended consequences of accepting algorithmic advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyy发布了新的文献求助10
1秒前
1秒前
wen发布了新的文献求助10
1秒前
西雅发布了新的文献求助10
3秒前
lyly完成签到,获得积分10
4秒前
Junewang发布了新的文献求助10
6秒前
iNk应助Theo采纳,获得10
7秒前
CCC发布了新的文献求助10
7秒前
华仔应助完美的海秋采纳,获得30
8秒前
奋斗的友儿完成签到,获得积分10
10秒前
wen完成签到,获得积分20
11秒前
西雅完成签到,获得积分10
11秒前
chengzi完成签到,获得积分10
11秒前
新酱完成签到,获得积分10
12秒前
小白完成签到 ,获得积分20
12秒前
smj完成签到,获得积分10
13秒前
treelet007发布了新的文献求助10
17秒前
真诚李完成签到,获得积分20
20秒前
赘婿应助zmw采纳,获得30
21秒前
23秒前
油麦完成签到 ,获得积分10
24秒前
山上的树完成签到 ,获得积分10
24秒前
马1112发布了新的文献求助20
26秒前
Ava应助二三采纳,获得10
27秒前
clearsky完成签到,获得积分20
28秒前
28秒前
隐形曼青应助LCC采纳,获得10
30秒前
寄托完成签到 ,获得积分10
30秒前
31秒前
马上毕业完成签到,获得积分10
31秒前
钟于发布了新的文献求助10
32秒前
zm完成签到,获得积分10
33秒前
香蕉觅云应助斯文的涵双采纳,获得30
34秒前
iNk应助Theo采纳,获得10
35秒前
Sicily发布了新的文献求助10
38秒前
在水一方应助yyy采纳,获得10
38秒前
马上毕业发布了新的文献求助10
39秒前
麦兜完成签到 ,获得积分10
40秒前
脑洞疼应助钟于采纳,获得10
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242704
求助须知:如何正确求助?哪些是违规求助? 2886962
关于积分的说明 8245419
捐赠科研通 2555512
什么是DOI,文献DOI怎么找? 1383601
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605