Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion

补语(音乐) 领域(数学分析) 计算机科学 建议(编程) 人工智能 风险厌恶(心理学) 心理学 认知心理学 机器学习 算法 社会心理学 经济 数学 数理经济学 基因 生物化学 表型 数学分析 化学 互补 程序设计语言 期望效用假设
作者
Ryan Allen,Prithwiraj Choudhury
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:33 (1): 149-169 被引量:129
标识
DOI:10.1287/orsc.2021.1554
摘要

Past research offers mixed perspectives on whether domain experience helps or hurts algorithm-augmented worker performance. Reconciling these perspectives, we theorize that intermediate levels of domain experience are optimal for algorithm-augmented performance, due to the interplay between two countervailing forces—ability and aversion. Although domain experience can increase performance via increased ability to complement algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance via increased aversion to accurate algorithmic advice. Because ability developed through learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent among experts, we theorize that algorithm-augmented performance will first rise with increasing domain experience, then fall. We test this by exploiting a within-subjects experiment in which corporate information technology support workers were assigned to resolve problems both manually and using an algorithmic tool. We confirm that the difference between performance with the algorithmic tool versus without the tool was characterized by an inverted U-shape over the range of domain experience. Only workers with moderate domain experience did significantly better using the algorithm than resolving tickets manually. These findings highlight that, even if greater domain experience increases workers’ ability to complement algorithms, domain experience can also trigger other mechanisms that overcome the positive ability effect and inhibit performance. Additional analyses and participant interviews suggest that, even though the highest experience workers had the greatest ability to complement the algorithmic tool, they rejected its advice because they felt greater accountability for possible unintended consequences of accepting algorithmic advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的静槐完成签到,获得积分10
刚刚
刚刚
糖呼噜完成签到,获得积分10
1秒前
常大有发布了新的文献求助10
1秒前
jxm发布了新的文献求助10
2秒前
小李子完成签到 ,获得积分10
2秒前
2秒前
乐辰发布了新的文献求助10
3秒前
苏东坡苏打水完成签到,获得积分10
3秒前
糖呼噜发布了新的文献求助10
4秒前
4秒前
木辛完成签到,获得积分10
5秒前
情怀应助wfwfewq采纳,获得10
5秒前
顺利芹菜完成签到,获得积分10
5秒前
5秒前
情怀应助烽火残心采纳,获得10
6秒前
尼古丁的味道完成签到 ,获得积分10
6秒前
6秒前
6秒前
北落发布了新的文献求助10
6秒前
书书完成签到,获得积分10
8秒前
Li656943234发布了新的文献求助10
8秒前
9秒前
Rollei应助laodie采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
超帅鸣凤完成签到,获得积分10
10秒前
不吃芝士发布了新的文献求助10
11秒前
11秒前
11秒前
在水一方应助pups采纳,获得10
12秒前
12秒前
缥缈的绿兰完成签到,获得积分10
12秒前
田様应助年年年年采纳,获得10
13秒前
skycool发布了新的文献求助10
14秒前
可爱的函函应助cg666采纳,获得10
14秒前
英姑应助杨立胜采纳,获得10
15秒前
15秒前
dzc完成签到,获得积分10
15秒前
Jerry发布了新的文献求助50
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400