Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion

补语(音乐) 领域(数学分析) 计算机科学 建议(编程) 人工智能 风险厌恶(心理学) 心理学 认知心理学 机器学习 算法 社会心理学 经济 数学 数理经济学 基因 生物化学 表型 数学分析 化学 互补 程序设计语言 期望效用假设
作者
Ryan Allen,Prithwiraj Choudhury
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:33 (1): 149-169 被引量:96
标识
DOI:10.1287/orsc.2021.1554
摘要

Past research offers mixed perspectives on whether domain experience helps or hurts algorithm-augmented worker performance. Reconciling these perspectives, we theorize that intermediate levels of domain experience are optimal for algorithm-augmented performance, due to the interplay between two countervailing forces—ability and aversion. Although domain experience can increase performance via increased ability to complement algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance via increased aversion to accurate algorithmic advice. Because ability developed through learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent among experts, we theorize that algorithm-augmented performance will first rise with increasing domain experience, then fall. We test this by exploiting a within-subjects experiment in which corporate information technology support workers were assigned to resolve problems both manually and using an algorithmic tool. We confirm that the difference between performance with the algorithmic tool versus without the tool was characterized by an inverted U-shape over the range of domain experience. Only workers with moderate domain experience did significantly better using the algorithm than resolving tickets manually. These findings highlight that, even if greater domain experience increases workers’ ability to complement algorithms, domain experience can also trigger other mechanisms that overcome the positive ability effect and inhibit performance. Additional analyses and participant interviews suggest that, even though the highest experience workers had the greatest ability to complement the algorithmic tool, they rejected its advice because they felt greater accountability for possible unintended consequences of accepting algorithmic advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷冷完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
xixi很困完成签到 ,获得积分10
8秒前
大模型应助Hiuge采纳,获得10
9秒前
糖宝完成签到 ,获得积分10
10秒前
光亮若翠完成签到,获得积分10
13秒前
落雪完成签到 ,获得积分10
14秒前
Ava应助风中的棒棒糖采纳,获得10
16秒前
风起枫落完成签到 ,获得积分10
16秒前
可靠诗筠完成签到 ,获得积分10
16秒前
故意的怜晴完成签到 ,获得积分10
18秒前
一粟的粉r完成签到 ,获得积分10
19秒前
Jimmy_King完成签到 ,获得积分10
30秒前
tangzanwayne完成签到 ,获得积分10
30秒前
32秒前
心灵美草丛完成签到,获得积分10
33秒前
652183758完成签到 ,获得积分10
34秒前
36秒前
热带蚂蚁完成签到 ,获得积分10
36秒前
1002SHIB完成签到,获得积分10
39秒前
40秒前
40秒前
nihaolaojiu完成签到,获得积分10
40秒前
sheetung完成签到,获得积分10
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
麦田麦兜完成签到,获得积分10
42秒前
洋洋发布了新的文献求助20
44秒前
lling完成签到 ,获得积分10
47秒前
48秒前
Lny发布了新的文献求助20
50秒前
孟寐以求完成签到 ,获得积分10
55秒前
1111完成签到 ,获得积分10
58秒前
su完成签到 ,获得积分0
1分钟前
wBw完成签到,获得积分0
1分钟前
耍酷寻双完成签到 ,获得积分10
1分钟前
善良的蛋挞完成签到,获得积分10
1分钟前
FFFFFF完成签到 ,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029