亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion

补语(音乐) 领域(数学分析) 计算机科学 建议(编程) 人工智能 风险厌恶(心理学) 心理学 认知心理学 机器学习 算法 社会心理学 经济 数学 数理经济学 基因 生物化学 表型 数学分析 化学 互补 程序设计语言 期望效用假设
作者
Ryan Allen,Prithwiraj Choudhury
出处
期刊:Organization Science [Institute for Operations Research and the Management Sciences]
卷期号:33 (1): 149-169 被引量:84
标识
DOI:10.1287/orsc.2021.1554
摘要

Past research offers mixed perspectives on whether domain experience helps or hurts algorithm-augmented worker performance. Reconciling these perspectives, we theorize that intermediate levels of domain experience are optimal for algorithm-augmented performance, due to the interplay between two countervailing forces—ability and aversion. Although domain experience can increase performance via increased ability to complement algorithmic advice (e.g., identifying inaccurate predictions), it can also decrease performance via increased aversion to accurate algorithmic advice. Because ability developed through learning by doing increases at a decreasing rate, and algorithmic aversion is more prevalent among experts, we theorize that algorithm-augmented performance will first rise with increasing domain experience, then fall. We test this by exploiting a within-subjects experiment in which corporate information technology support workers were assigned to resolve problems both manually and using an algorithmic tool. We confirm that the difference between performance with the algorithmic tool versus without the tool was characterized by an inverted U-shape over the range of domain experience. Only workers with moderate domain experience did significantly better using the algorithm than resolving tickets manually. These findings highlight that, even if greater domain experience increases workers’ ability to complement algorithms, domain experience can also trigger other mechanisms that overcome the positive ability effect and inhibit performance. Additional analyses and participant interviews suggest that, even though the highest experience workers had the greatest ability to complement the algorithmic tool, they rejected its advice because they felt greater accountability for possible unintended consequences of accepting algorithmic advice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李亚宁完成签到,获得积分10
5秒前
13秒前
sci完成签到 ,获得积分10
23秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
黑大侠完成签到 ,获得积分10
2分钟前
2分钟前
思源应助sss采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
梨子茶发布了新的文献求助10
2分钟前
2分钟前
sss发布了新的文献求助10
2分钟前
3分钟前
诚心的信封完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
4分钟前
雪流星完成签到 ,获得积分10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
紫熊发布了新的文献求助30
5分钟前
5分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128693
捐赠科研通 3238319
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069