可解释性
计算机科学
校准
克里金
机器学习
贝叶斯优化
贝叶斯概率
高斯过程
疟疾
传输(电信)
人工智能
数据挖掘
高斯分布
统计
数学
医学
电信
量子力学
物理
免疫学
作者
Theresa Reiker,Monica Golumbeanu,Andrew J. Shattock,Lydia Burgert,Thomas A. Smith,Sarah Filippi,Ewan Cameron,Melissa A. Penny
标识
DOI:10.1038/s41467-021-27486-z
摘要
Abstract Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator. We demonstrate our approach by optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Our approach quickly outperforms previous calibrations, yielding an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability.
科研通智能强力驱动
Strongly Powered by AbleSci AI