Deep multi-graph neural networks with attention fusion for recommendation

计算机科学 人工智能 人工神经网络 深层神经网络 机器学习 图形 理论计算机科学
作者
Yuzhi Song,Hailiang Ye,Ming Li,Feilong Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:191: 116240-116240 被引量:41
标识
DOI:10.1016/j.eswa.2021.116240
摘要

Graph neural networks (GNNs), with their promising potential to learn effective graph representation, have been widely used for recommender systems, in which the given graph data contains abundant users, items, and their historical interaction information. How to obtain preferable latent representations for both users and items is one of the key issues for GNN-based recommendation. This paper develops a novel deep GNN model with multi-graph attention fusion, MAF-GNN. This framework constructs two feature graph attention modules and a multi-scale latent features module, to generate better user and item latent features from input information. Specifically, the dual-branch residual graph attention (DBRGA) module is presented to extract neighbors’ similar features from user and item graphs effectively and easily. Then multi-scale latent matrices are captured by applying non-linear transformations which are embedded to reduce the cost of dimension selection. Furthermore, a hybrid fusion graph attention (HFGA) module is designed to obtain valuable collaborative information from the user–item interaction graph, aiming to further refine the latent embedding of users and items. Finally, the whole MAF-GNN framework is optimized by a geometric factorized regularization loss. Extensive experiment results on both synthetic and real-world datasets illustrate that MAF-GNN can achieve better recommendation performance with a certain level of interpretability than some existing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
kirito发布了新的文献求助10
1秒前
曹梦龙发布了新的文献求助10
1秒前
温暖宛筠发布了新的文献求助10
1秒前
2秒前
隐形曼青应助77采纳,获得10
2秒前
科研小白发布了新的文献求助10
2秒前
WANG完成签到,获得积分10
2秒前
丁昆发布了新的文献求助10
3秒前
3秒前
TinTin发布了新的文献求助10
4秒前
4秒前
科研通AI6应助BENRONG采纳,获得10
5秒前
5秒前
今后应助侠客采纳,获得10
5秒前
完美世界应助刘一一采纳,获得10
6秒前
情怀应助油条狗采纳,获得10
6秒前
fu完成签到,获得积分10
7秒前
7秒前
cc251672发布了新的文献求助10
8秒前
只爱LJT发布了新的文献求助10
8秒前
小J应助锅巴采纳,获得10
9秒前
9秒前
10秒前
李健应助天音法里奈采纳,获得10
11秒前
科目三应助rattlebox321采纳,获得10
12秒前
12秒前
12秒前
13秒前
老实奇迹发布了新的文献求助10
14秒前
14秒前
Pioneer完成签到 ,获得积分10
14秒前
15秒前
123发布了新的文献求助10
15秒前
15秒前
七叶树完成签到,获得积分10
15秒前
zhouxuefeng完成签到,获得积分10
16秒前
英吉利25发布了新的文献求助10
16秒前
16秒前
唐文硕发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175