亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Path Planning Optimization Algorithm Based on Particle Swarm Optimization for UAVs for Bird Monitoring and Repelling

粒子群优化 计算机科学 运动规划 路径(计算) 数学优化 随机性 实时计算 算法 模拟 数学 人工智能 机器人 统计 程序设计语言
作者
Ricardo Mesquita,Pedro Dinis Gaspar
出处
期刊:Processes [MDPI AG]
卷期号:10 (1): 62-62 被引量:21
标识
DOI:10.3390/pr10010062
摘要

Bird damage to fruit crops causes significant monetary losses to farmers annually. The application of traditional bird repelling methods such as bird cannons and tree netting become inefficient in the long run, requiring high maintenance and reducing mobility. Due to their versatility, Unmanned Aerial Vehicles (UAVs) can be beneficial to solve this problem. However, due to their low battery capacity that equals low flight duration, it is necessary to evolve path planning optimization. A novel path planning optimization algorithm of UAVs based on Particle Swarm Optimization (PSO) is presented in this paper. This path planning optimization algorithm aims to manage the drone’s distance and flight time, applying optimization and randomness techniques to overcome the disadvantages of the traditional systems. The proposed algorithm’s performance was tested in three study cases: two of them in simulation to test the variation of each parameter and one in the field to test the influence on battery management and height influence. All cases were tested in the three possible situations: same incidence rate, different rates, and different rates with no bird damage to fruit crops. The field tests were also essential to understand the algorithm’s behavior of the path planning algorithm in the UAV, showing that there is less efficiency with fewer points of interest, but this does not correlate with the flight time. In addition, there is no association between the maximum horizontal speed and the flight time, which means that the function to calculate the total distance for path planning needs to be adjusted. Thus, the proposed algorithm presents promising results with an outstanding reduced average error in the total distance for the path planning obtained and low execution time, being suited for this and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CATH完成签到 ,获得积分10
17秒前
24秒前
49秒前
熊猫发布了新的文献求助20
54秒前
ding应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得30
57秒前
1分钟前
CipherSage应助蝈蝈采纳,获得10
1分钟前
lpcxly发布了新的文献求助20
1分钟前
眯眯眼的衬衫应助熊猫采纳,获得10
1分钟前
今后应助熊猫采纳,获得20
1分钟前
熊猫完成签到,获得积分10
2分钟前
LUUUUU完成签到,获得积分10
2分钟前
无花果应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助LUUUUU采纳,获得10
3分钟前
3分钟前
lwy同学发布了新的文献求助10
3分钟前
Owen应助TengYu采纳,获得10
3分钟前
领导范儿应助lwy同学采纳,获得10
3分钟前
3分钟前
TengYu发布了新的文献求助10
4分钟前
TengYu完成签到,获得积分10
4分钟前
4分钟前
蝈蝈发布了新的文献求助10
4分钟前
张杰列夫完成签到 ,获得积分10
4分钟前
林家小弟完成签到 ,获得积分10
4分钟前
蝈蝈完成签到,获得积分10
4分钟前
Akim应助蝈蝈采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
Lucas应助倦鸟余花采纳,获得10
5分钟前
脑洞疼应助百里幻竹采纳,获得10
5分钟前
5分钟前
zxcsdfa应助菲菲爱学习采纳,获得10
5分钟前
lpcxly发布了新的文献求助10
5分钟前
华仔应助野性的柠檬采纳,获得10
5分钟前
Hello应助fairy112233采纳,获得10
6分钟前
6分钟前
百里幻竹发布了新的文献求助10
6分钟前
6分钟前
热爱科研的人完成签到 ,获得积分10
6分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055157
捐赠科研通 2746944
什么是DOI,文献DOI怎么找? 1507179
科研通“疑难数据库(出版商)”最低求助积分说明 696434
邀请新用户注册赠送积分活动 695936