剪接
支持向量机
概率逻辑
人工智能
密码子使用偏好性
计算机科学
RNA剪接
隐马尔可夫模型
马尔可夫链
试验装置
特征选择
模式识别(心理学)
计算生物学
基因
遗传学
机器学习
生物
基因组
核糖核酸
作者
Dan Wei,Yin Peng,Yanjie Wei,Qingshan Jiang,Jinglong Fang
出处
期刊:International Journal of Data Mining and Bioinformatics
[Inderscience Enterprises Ltd.]
日期:2016-01-01
卷期号:16 (4): 345-345
标识
DOI:10.1504/ijdmb.2016.082211
摘要
Predicting splice sites is very important for gene identification. In this paper, we propose a hybrid splice site prediction method, SVM with Markov model and Codon usage (MC-SVM). The sequence features used for MC-SVM contain the codon bias information and the Markov probabilistic dependence information between adjacent nucleotides. Feature selection is performed using an F-score-based method, and then MC-SVM employs SVM to predict splice sites for both the acceptor and the donor sites. The test on the HS3D data set shows MC-SVM performs well for human gene sequences. The prediction accuracy of MC-SVM is 94.0% for donor splice sites, and 91.5% for acceptor splice sites on the data set with an equal amount of true and false splice site sequences. Compared with many other methods, MC-SVM achieved an improved prediction performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI