Chemical identification and quality evaluation of Lycopus lucidus Turcz by UHPLC‐Q‐TOF‐MS and HPLC‐MS/MS and hierarchical clustering analysis

化学 色谱法 重复性
作者
Qiang Ren,Lin Ding,Shanshan Sun,Huiyun Wang,Liang Qu
出处
期刊:Biomedical Chromatography [Wiley]
卷期号:31 (5) 被引量:10
标识
DOI:10.1002/bmc.3867
摘要

Lycopus lucidus Turcz has been used as a traditional phytomedicine for menstrual disorder, amenorrhea, menstrual cramps, inflammation and cardiovascular diseases. However, there is not enough information about identification and quantification for the chemical constituents of L. lucidus Turcz. In this work, a simple, rapid and sensitive UHPLC-Q-TOF-MS method was developed for characterization and identification of the phytochemical compositions in L. lucidus Turcz in negative ion mode. A total of 37 compounds, including 15 phenolic acids, 12 flavonoids, three triterpenoids and seven organic acids were tentatively characterized and identified by means of the retention time, accurate mass and characteristic fragment ions. Thirteen compounds were reported for the first time in L. lucidus Turcz. Among of them, 11 compounds were further quantified by multiple reactions monitoring. The results showed good performance with respect to linearity (r > 0.9959), repeatability (RSD < 2.6%), intra- and inter-day precision (RSD < 3.2%), recovery (93.1-104.9%), and lower limit of quantification (5-50 ng/mL). Subsequently, the results were analyzed and classified by hierarchical cluster analysis. The research could be applied for identification and quality evaluation for L. lucidus Turcz.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁帅琦发布了新的文献求助10
2秒前
2秒前
塔塔饼完成签到,获得积分10
3秒前
3秒前
Dsunflower完成签到 ,获得积分10
3秒前
搜集达人应助lxj5983采纳,获得10
3秒前
我来也完成签到 ,获得积分10
5秒前
5秒前
飞飞飞发布了新的文献求助10
6秒前
噜噜发布了新的文献求助10
7秒前
Fox发布了新的文献求助10
7秒前
小青虫发布了新的文献求助10
7秒前
8秒前
8秒前
糖糖钰发布了新的文献求助10
10秒前
zx完成签到,获得积分10
11秒前
judy发布了新的文献求助10
11秒前
螃蟹医生完成签到,获得积分10
12秒前
mavissss发布了新的文献求助30
12秒前
13秒前
SYLH应助细心帽子采纳,获得10
13秒前
13秒前
彪壮的若男完成签到 ,获得积分10
14秒前
bear应助飞飞飞采纳,获得10
14秒前
圣飞云宇完成签到,获得积分10
15秒前
shufessm完成签到,获得积分10
17秒前
小蘑菇应助淡淡文博采纳,获得10
17秒前
杀手猪猫发布了新的文献求助10
18秒前
sarmad完成签到,获得积分10
20秒前
我是谁关注了科研通微信公众号
20秒前
planto发布了新的文献求助10
21秒前
无辜的板凳完成签到,获得积分10
25秒前
SYLH应助czp采纳,获得10
27秒前
听南发布了新的文献求助10
28秒前
兔子很颓完成签到,获得积分10
29秒前
隐形曼青应助sarmad采纳,获得10
30秒前
30秒前
32秒前
听南完成签到,获得积分20
33秒前
古蓦然完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425