The spectral similarity scale and its application to the classification of hyperspectral remote sensing data

高光谱成像 光谱形状分析 欧几里德距离 相似性(几何) 亮度 偏移量(计算机科学) 数学 多光谱图像 相似性度量 光谱带 相关系数 谱线 遥感 比例(比率) 模式识别(心理学) 全光谱成像 计算机科学 人工智能 光学 几何学 物理 统计 图像(数学) 地理 天文 程序设计语言 量子力学
作者
J.N. Sweet
标识
DOI:10.1109/warsd.2003.1295179
摘要

Hyperspectral images have considerable information content and are becoming common. Analysis tools must keep up with the changing demands and opportunities posed by the new datasets. Many spectral image analysis algorithms depend on a scalar measure of spectral similarity or 'spectral distance' to provide an estimate of how closely two spectra resemble each other. Unfortunately, traditional spectral similarity measures are ambiguous in their distinction of similarity. Traditional metrics can define a pair of spectra to be nearly identical mathematically yet visual inspection shows them to be spectroscopically dissimilar. These algorithms do not separately quantify both magnitude and direction differences. Three common algorithms used to measure the distance between remotely sensed reflectance spectra are Euclidean distance, correlation coefficient, and spectral angle. Euclidean distance primarily measures overall brightness differences but does not respond to the correlation (or lack thereof) between two spectra. The correlation coefficient is very responsive to differences in direction (i.e. spectral shape) but does not respond to brightness differences due to band-independent gain or offset factors. Spectral angle is closely related mathematically to the correlation coefficient and is primarily responsive to differences in spectral shape. However, spectral angle does respond to brightness differences due to a uniform offset, which confounds the interpretation of the spectral angle value. This paper proposes the spectral similarity scale (SSS) as an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions (i.e. brightness and spectral shape). Therefore, the SSS is a fundamental improvement in the description of distance or similarity between two reflectance spectra. In addition, it demonstrates the use of the SSS by discussing an unsupervised classification algorithm based on the SSS named ClaSSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WNing发布了新的文献求助10
刚刚
莴苣完成签到,获得积分10
刚刚
叭叭完成签到,获得积分10
3秒前
大模型应助LXF采纳,获得10
4秒前
所所应助VDC采纳,获得10
5秒前
6秒前
所所应助Suki采纳,获得10
6秒前
6秒前
阿斌完成签到,获得积分10
9秒前
jojo完成签到 ,获得积分10
9秒前
10秒前
燕海雪发布了新的文献求助10
10秒前
yyyyyyyyyyyiiii完成签到 ,获得积分10
11秒前
11秒前
iridium完成签到 ,获得积分10
12秒前
正之发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
青淼发布了新的文献求助10
15秒前
圆圆完成签到,获得积分10
16秒前
稳住完成签到,获得积分10
17秒前
爱吃橙子皮完成签到,获得积分10
17秒前
ranj完成签到,获得积分10
20秒前
20秒前
21秒前
lindsay发布了新的文献求助10
21秒前
yang发布了新的文献求助10
21秒前
科研通AI5应助yahonyoyoyo采纳,获得50
21秒前
科研通AI5应助球球采纳,获得10
21秒前
21秒前
酷波er应助458965采纳,获得10
21秒前
24秒前
Ryan发布了新的文献求助10
28秒前
zho发布了新的文献求助10
29秒前
29秒前
32秒前
yahonyoyoyo发布了新的文献求助50
35秒前
路人甲乙丙丁完成签到,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673078
求助须知:如何正确求助?哪些是违规求助? 3229040
关于积分的说明 9783391
捐赠科研通 2939397
什么是DOI,文献DOI怎么找? 1611041
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736242