已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:7 (6): 476-476 被引量:169
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫酬海发布了新的文献求助10
3秒前
4秒前
宇冠琉璃完成签到,获得积分10
5秒前
发一篇sci完成签到 ,获得积分10
6秒前
子非鱼发布了新的文献求助10
6秒前
小郭不洗锅完成签到,获得积分10
8秒前
兼听则明完成签到,获得积分10
8秒前
传奇3应助新的旅程采纳,获得10
9秒前
9秒前
情怀应助Jason采纳,获得10
10秒前
JamesPei应助123采纳,获得10
11秒前
sjs11完成签到,获得积分10
12秒前
loen完成签到,获得积分10
15秒前
一直向前发布了新的文献求助10
17秒前
效果好那你那边vv完成签到,获得积分10
19秒前
如果完成签到,获得积分10
20秒前
Arui发布了新的文献求助10
20秒前
21秒前
鱼鱼鱼完成签到,获得积分10
22秒前
隐形曼青应助wish采纳,获得10
23秒前
铅笔完成签到,获得积分10
24秒前
朝暮完成签到 ,获得积分10
25秒前
科研通AI2S应助悬殊采纳,获得10
32秒前
冷眸完成签到,获得积分10
32秒前
顾矜应助活力青筠采纳,获得10
40秒前
43秒前
JamesPei应助烂漫的煎饼采纳,获得10
43秒前
43秒前
小猪完成签到 ,获得积分10
46秒前
大大怪发布了新的文献求助10
47秒前
136542发布了新的文献求助30
47秒前
48秒前
情怀应助俏皮的白柏采纳,获得10
49秒前
酷波er应助Blue_Wolf采纳,获得10
49秒前
JJ发布了新的文献求助10
51秒前
烟花应助科研通管家采纳,获得10
52秒前
爆米花应助科研通管家采纳,获得10
52秒前
Rondab应助科研通管家采纳,获得10
52秒前
Rondab应助科研通管家采纳,获得10
52秒前
丘比特应助科研通管家采纳,获得10
53秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989811
求助须知:如何正确求助?哪些是违规求助? 3531927
关于积分的说明 11255560
捐赠科研通 3270706
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190