Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:7 (6): 476-476 被引量:169
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
之_ZH完成签到 ,获得积分10
8秒前
gds2021完成签到 ,获得积分10
10秒前
你好呀嘻嘻完成签到 ,获得积分10
10秒前
梅特卡夫完成签到,获得积分10
12秒前
熊雅完成签到,获得积分10
13秒前
15秒前
睡到自然醒完成签到 ,获得积分10
16秒前
cis2014完成签到,获得积分10
18秒前
独特的大有完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
xingyi完成签到,获得积分10
23秒前
24秒前
舒心的秋荷完成签到 ,获得积分10
27秒前
zz123发布了新的文献求助10
28秒前
liaomr完成签到 ,获得积分10
28秒前
粗犷的灵松完成签到,获得积分10
29秒前
吃小孩的妖怪完成签到 ,获得积分10
29秒前
ncuwzq完成签到,获得积分10
31秒前
yshj完成签到 ,获得积分10
32秒前
34秒前
净禅完成签到 ,获得积分10
36秒前
38秒前
迷人的寒风完成签到,获得积分10
39秒前
39秒前
water应助科研通管家采纳,获得10
40秒前
Lucas应助HHHAN采纳,获得10
42秒前
无情修杰完成签到 ,获得积分10
43秒前
小柒完成签到 ,获得积分10
45秒前
聪慧芷巧发布了新的文献求助10
46秒前
47秒前
51秒前
蓝意完成签到,获得积分0
52秒前
xiaohongmao完成签到,获得积分10
57秒前
1分钟前
qweerrtt完成签到,获得积分10
1分钟前
1分钟前
与共发布了新的文献求助10
1分钟前
carly完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022