Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:7 (6): 476-476 被引量:169
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUU完成签到,获得积分10
1秒前
4秒前
忧郁盼夏完成签到,获得积分10
4秒前
4秒前
搜集达人应助su采纳,获得10
6秒前
丘比特应助gwenjing采纳,获得10
6秒前
哈哈哈完成签到,获得积分10
8秒前
8秒前
冷艳的姿发布了新的文献求助10
8秒前
dpp完成签到,获得积分10
9秒前
周周完成签到,获得积分10
11秒前
12秒前
12秒前
哈哈哈发布了新的文献求助30
12秒前
123发布了新的文献求助10
13秒前
15秒前
Stardust发布了新的文献求助10
15秒前
momo发布了新的文献求助10
16秒前
18秒前
笑笑完成签到,获得积分20
20秒前
stephenzh完成签到,获得积分10
20秒前
su发布了新的文献求助10
22秒前
笑笑发布了新的文献求助10
23秒前
李健的粉丝团团长应助momo采纳,获得10
24秒前
情怀应助LJJ采纳,获得10
26秒前
30秒前
31秒前
31秒前
33秒前
阿里巴巴大盗完成签到,获得积分10
34秒前
zying发布了新的文献求助30
34秒前
传奇3应助muzi采纳,获得10
35秒前
35秒前
35秒前
谢琉圭发布了新的文献求助10
37秒前
wu发布了新的文献求助10
38秒前
打滚完成签到,获得积分10
39秒前
LJJ发布了新的文献求助10
39秒前
睡觉了完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173