Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:7 (6): 476-476 被引量:169
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耘清完成签到,获得积分10
刚刚
蜉蝣应助qq采纳,获得10
1秒前
1秒前
1秒前
zj发布了新的文献求助10
1秒前
2秒前
3秒前
哦哦哦完成签到 ,获得积分10
5秒前
Kai完成签到 ,获得积分10
6秒前
fd完成签到,获得积分10
6秒前
西柚发布了新的文献求助10
7秒前
张乔然发布了新的文献求助30
7秒前
千暮完成签到,获得积分10
7秒前
7秒前
8秒前
kyt完成签到,获得积分10
9秒前
猎空完成签到,获得积分10
9秒前
yuyuyu完成签到,获得积分10
9秒前
qq完成签到,获得积分10
10秒前
hhh发布了新的文献求助10
10秒前
小Z完成签到,获得积分10
11秒前
11秒前
13秒前
虚心的不二完成签到 ,获得积分10
13秒前
13秒前
13秒前
Ll完成签到,获得积分10
14秒前
所所应助兽医12138采纳,获得10
15秒前
WLWLW应助张乔然采纳,获得30
15秒前
老何发布了新的文献求助30
16秒前
iNk完成签到,获得积分0
16秒前
inferyes完成签到,获得积分10
16秒前
acc完成签到,获得积分10
16秒前
呼延含双完成签到,获得积分10
17秒前
脑洞疼应助OmniQuan采纳,获得10
17秒前
18秒前
18秒前
Obliviate发布了新的文献求助10
19秒前
123完成签到,获得积分10
19秒前
年华完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Lab-on-a-chip Devices for Advanced Biomedicines: Laboratory Scale Engineering to Clinical Ecosystem 1000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4530417
求助须知:如何正确求助?哪些是违规求助? 3968872
关于积分的说明 12296468
捐赠科研通 3634614
什么是DOI,文献DOI怎么找? 2000664
邀请新用户注册赠送积分活动 1036715
科研通“疑难数据库(出版商)”最低求助积分说明 926431