Severity Prediction of Traffic Accidents with Recurrent Neural Networks

循环神经网络 Softmax函数 计算机科学 辍学(神经网络) 人工智能 人工神经网络 机器学习 逻辑回归 深度学习 多层感知器
作者
Maher Ibrahim Sameen,Biswajeet Pradhan
出处
期刊:Applied sciences [MDPI AG]
卷期号:7 (6): 476-476 被引量:166
标识
DOI:10.3390/app7060476
摘要

In this paper, a deep learning model using a Recurrent Neural Network (RNN) was developed and employed to predict the injury severity of traffic accidents based on 1130 accident records that have occurred on the North-South Expressway (NSE), Malaysia over a six-year period from 2009 to 2015. Compared to traditional Neural Networks (NNs), the RNN method is more effective for sequential data, and is expected to capture temporal correlations among the traffic accident records. Several network architectures and configurations were tested through a systematic grid search to determine an optimal network for predicting the injury severity of traffic accidents. The selected network architecture comprised of a Long-Short Term Memory (LSTM) layer, two fully-connected (dense) layers and a Softmax layer. Next, to avoid over-fitting, the dropout technique with a probability of 0.3 was applied. Further, the network was trained with a Stochastic Gradient Descent (SGD) algorithm (learning rate = 0.01) in the Tensorflow framework. A sensitivity analysis of the RNN model was further conducted to determine these factors’ impact on injury severity outcomes. Also, the proposed RNN model was compared with Multilayer Perceptron (MLP) and Bayesian Logistic Regression (BLR) models to understand its advantages and limitations. The results of the comparative analyses showed that the RNN model outperformed the MLP and BLR models. The validation accuracy of the RNN model was 71.77%, whereas the MLP and BLR models achieved 65.48% and 58.30% respectively. The findings of this study indicate that the RNN model, in deep learning frameworks, can be a promising tool for predicting the injury severity of traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助hayk采纳,获得30
1秒前
坚定的骁发布了新的文献求助10
1秒前
打打应助盐植物采纳,获得10
1秒前
离家出走的杰瑞完成签到,获得积分10
2秒前
nini可可味发布了新的文献求助10
4秒前
七安完成签到 ,获得积分10
5秒前
5秒前
徐徐完成签到,获得积分10
7秒前
aliupeifang发布了新的文献求助10
9秒前
刘汉淼完成签到,获得积分10
10秒前
10秒前
科研小白完成签到,获得积分10
11秒前
ding应助逗号先生采纳,获得10
11秒前
等风来发布了新的文献求助10
11秒前
11秒前
七安关注了科研通微信公众号
11秒前
lin yan完成签到 ,获得积分10
15秒前
15秒前
直率的惜寒完成签到,获得积分10
15秒前
於依白发布了新的文献求助10
15秒前
小星星完成签到 ,获得积分10
17秒前
keke发布了新的文献求助10
17秒前
一期一会发布了新的文献求助10
17秒前
18秒前
南巷发布了新的文献求助10
19秒前
mmmmm完成签到,获得积分10
20秒前
20秒前
20秒前
Orange应助你的男孩DD采纳,获得10
21秒前
22秒前
23秒前
Seoyeong发布了新的文献求助10
23秒前
阿喵完成签到,获得积分0
24秒前
於依白完成签到,获得积分10
25秒前
Hwalnut完成签到,获得积分10
25秒前
SJD完成签到,获得积分0
25秒前
顺遂发布了新的文献求助10
26秒前
lg20010419完成签到,获得积分10
27秒前
脑洞疼应助keke采纳,获得10
27秒前
狗头发布了新的文献求助10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138303
求助须知:如何正确求助?哪些是违规求助? 2789341
关于积分的说明 7790881
捐赠科研通 2445588
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065