Research advances in fault diagnosis and prognostic based on deep learning

深度学习 人工智能 卷积神经网络 深信不疑网络 计算机科学 机器学习 断层(地质) 领域(数学) 人工神经网络 特征工程 数学 地质学 地震学 纯数学
作者
Guangbo Zhao,Guohui Zhang,Qiangqiang Ge,Xiaoyong Liu
标识
DOI:10.1109/phm.2016.7819786
摘要

Aiming to condition based maintenance for complex equipment, numerous intelligent fault diagnosis and prognostic methods based on machine learning have been researched. Compared with the traditional shallow models, which have problems of lacking expression capacity and existing the curse of dimensionality, using deep learning theory can effectively mine characteristics and accurately recognize the health condition. In consequence, fault diagnosis and prognostic based on deep learning have turned into an innovative and promising research field. This paper gives a review of fault diagnosis and prognostic based on deep learning. First of all, a brief introduction to deep learning architecture and the framework of fault diagnosis based on deep learning is described. Second, tracking describes the latest progress of fault diagnosis and prognostic based on deep learning in chronological order. In this section, the deep learning methods used in fault diagnosis and prognostic are discussed, including Deep Neural Network (DNN), Deep Belief Network (DBN) and Convolutional Neural Network (CNN). Then the engineering application fields are summarized, such as mechanical equipment diagnosis, electrical equipment diagnosis, etc. Finally, this paper indicates the potential future research issues in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单发布了新的文献求助10
刚刚
刚刚
刚刚
jjw123完成签到,获得积分10
1秒前
2秒前
坚强怀绿发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
hanxin发布了新的文献求助10
2秒前
苦学僧完成签到,获得积分10
2秒前
小雪糕发布了新的文献求助10
2秒前
3秒前
栈逸完成签到,获得积分10
3秒前
hh完成签到,获得积分20
3秒前
漂亮钢铁侠完成签到,获得积分10
3秒前
大力绾绾发布了新的文献求助10
4秒前
庞伟泽发布了新的文献求助10
4秒前
ZYou完成签到,获得积分10
4秒前
4秒前
13223456完成签到,获得积分10
5秒前
廖喜林发布了新的文献求助10
5秒前
6秒前
6秒前
Forsyl发布了新的文献求助10
6秒前
7秒前
ZY发布了新的文献求助30
7秒前
8秒前
13223456发布了新的文献求助10
8秒前
pan完成签到,获得积分10
8秒前
8秒前
李健应助彬彬采纳,获得10
9秒前
YXX发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科演小能手完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551876
求助须知:如何正确求助?哪些是违规求助? 4636641
关于积分的说明 14645054
捐赠科研通 4578515
什么是DOI,文献DOI怎么找? 2510927
邀请新用户注册赠送积分活动 1486179
关于科研通互助平台的介绍 1457464