超材料
环面
材料科学
偶极子
激发
质量(理念)
分裂环谐振器
光子超材料
光学
光电子学
物理
等离子体
量子力学
作者
Zhe Liu,Shuo Du,Ajuan Cui,Zhancheng Li,Yuancheng Fan,Shuqi Chen,Wuxia Li,Changzhi Gu
标识
DOI:10.1002/adma.201606298
摘要
With unusual electromagnetic radiation properties and great application potentials, optical toroidal moments have received increasing interest in recent years. 3D metamaterials composed of split ring resonators with specific orientations in micro-/nanoscale are a perfect choice for toroidal moment realization in optical frequency considering the excellent magnetic confinement and quality factor, which, unfortunately, are currently beyond the reach of existing micro-/nanofabrication techniques. Here, a 3D toroidal metamaterial operating in mid-infrared region constructed by metal patterns and dielectric frameworks is designed, by which high-quality-factor toroidal resonance is observed experimentally. The toroidal dipole excitation is confirmed numerically and further demonstrated by phase analysis. Furthermore, the far-field radiation intensity of the excited toroidal dipoles can be adjusted to be predominant among other multipoles by just tuning the incident angle. The related processing method expands the capability of focused ion beam folding technologies greatly, especially in 3D metamaterial fabrication, showing great flexibility and nanoscale controllability on structure size, position, and orientation.
科研通智能强力驱动
Strongly Powered by AbleSci AI