Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks

自愈水凝胶 聚合物 形状记忆聚合物 材料科学 形状记忆合金 纳米技术 化学工程 智能材料 复合材料 高分子化学 工程类
作者
Candy Löwenberg,Maria Balk,Christian Wischke,Marc Behl,Andreas Lendlein
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 723-732 被引量:251
标识
DOI:10.1021/acs.accounts.6b00584
摘要

ConspectusThe ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts.In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小城故事和冰雨完成签到,获得积分10
2秒前
lhf完成签到,获得积分10
2秒前
Feng5945发布了新的文献求助10
2秒前
wangye完成签到,获得积分10
4秒前
重要板凳完成签到 ,获得积分10
6秒前
7秒前
Bminor完成签到,获得积分10
8秒前
可可可126完成签到 ,获得积分10
10秒前
要减肥人杰完成签到,获得积分20
10秒前
chongchong完成签到 ,获得积分10
11秒前
笨笨友安完成签到,获得积分10
12秒前
13秒前
王小胖完成签到,获得积分20
14秒前
Keymo发布了新的文献求助10
14秒前
15秒前
16秒前
踏实的傲白完成签到 ,获得积分10
16秒前
自觉誉发布了新的文献求助10
17秒前
情怀应助橙花采纳,获得10
17秒前
xiaoze完成签到,获得积分10
17秒前
文献求助完成签到,获得积分10
18秒前
18秒前
xsq86发布了新的文献求助10
19秒前
领导范儿应助这丁采纳,获得10
20秒前
li完成签到 ,获得积分10
20秒前
Vicky完成签到 ,获得积分10
20秒前
juqiu发布了新的文献求助10
21秒前
SaSa发布了新的文献求助10
21秒前
BitBong完成签到,获得积分10
22秒前
22秒前
恐龙先生完成签到,获得积分10
23秒前
星辰大海应助要减肥人杰采纳,获得10
24秒前
学术咸鱼依白完成签到 ,获得积分10
24秒前
teadan完成签到 ,获得积分10
25秒前
25秒前
奇奇吃面发布了新的文献求助10
26秒前
酷波er应助雪花采纳,获得10
26秒前
斩封应助龙阔采纳,获得50
27秒前
菲菲高发布了新的文献求助10
27秒前
妖娃娃发布了新的文献求助700
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011