已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks

自愈水凝胶 聚合物 形状记忆聚合物 材料科学 形状记忆合金 纳米技术 化学工程 智能材料 复合材料 高分子化学 工程类
作者
Candy Löwenberg,Maria Balk,Christian Wischke,Marc Behl,Andreas Lendlein
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 723-732 被引量:305
标识
DOI:10.1021/acs.accounts.6b00584
摘要

The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蹇蹇完成签到 ,获得积分10
1秒前
烟花应助常青采纳,获得10
2秒前
聪明夏波完成签到 ,获得积分20
2秒前
Sio完成签到,获得积分10
4秒前
漂泊2025完成签到,获得积分10
4秒前
纯真抽屉完成签到,获得积分10
4秒前
5秒前
LJL完成签到 ,获得积分10
6秒前
慎二完成签到 ,获得积分10
7秒前
缥缈的雪莲完成签到,获得积分10
8秒前
潇洒发夹发布了新的文献求助10
9秒前
柚子完成签到 ,获得积分10
11秒前
沁雪完成签到 ,获得积分10
14秒前
甜美帅哥完成签到 ,获得积分10
14秒前
苗条的小蜜蜂完成签到 ,获得积分10
14秒前
阿凝完成签到,获得积分10
15秒前
blueskyzhi完成签到,获得积分10
17秒前
EthanChan完成签到,获得积分10
18秒前
20秒前
22秒前
FOREST关注了科研通微信公众号
22秒前
面包圈完成签到 ,获得积分10
23秒前
王馨雨完成签到,获得积分10
24秒前
张佳星完成签到 ,获得积分10
26秒前
26秒前
27秒前
独特的斑马完成签到 ,获得积分10
29秒前
昭昭如我愿完成签到,获得积分10
31秒前
31秒前
自觉的夏之完成签到,获得积分10
32秒前
34秒前
34秒前
34秒前
37秒前
38秒前
何木萧完成签到,获得积分10
40秒前
41秒前
shame完成签到 ,获得积分10
45秒前
善学以致用应助dlfg采纳,获得10
45秒前
记得吃蔬菜完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611769
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889923
捐赠科研通 4726937
什么是DOI,文献DOI怎么找? 2545886
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236