清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks

自愈水凝胶 聚合物 形状记忆聚合物 材料科学 形状记忆合金 纳米技术 化学工程 智能材料 复合材料 高分子化学 工程类
作者
Candy Löwenberg,Maria Balk,Christian Wischke,Marc Behl,Andreas Lendlein
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 723-732 被引量:251
标识
DOI:10.1021/acs.accounts.6b00584
摘要

ConspectusThe ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts.In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风吹完成签到,获得积分10
15秒前
muriel完成签到,获得积分10
16秒前
宇文非笑完成签到 ,获得积分10
19秒前
嗑盐水君完成签到,获得积分10
1分钟前
Mannone完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分10
2分钟前
Giny完成签到 ,获得积分10
3分钟前
万能图书馆应助柿柿采纳,获得10
3分钟前
3分钟前
柿柿发布了新的文献求助10
3分钟前
3分钟前
Emperor完成签到 ,获得积分0
6分钟前
Eric发布了新的文献求助10
6分钟前
Lianna发布了新的文献求助30
7分钟前
CodeCraft应助Lianna采纳,获得30
7分钟前
酷波er应助激情的蜗牛采纳,获得10
7分钟前
方白秋完成签到,获得积分10
9分钟前
卿莞尔完成签到 ,获得积分10
9分钟前
11分钟前
mls发布了新的文献求助10
11分钟前
11分钟前
mls完成签到,获得积分10
11分钟前
章鱼完成签到,获得积分10
12分钟前
田様应助科研通管家采纳,获得10
14分钟前
淡淡醉波wuliao完成签到 ,获得积分10
14分钟前
iwaljq发布了新的文献求助10
15分钟前
Wang完成签到 ,获得积分20
15分钟前
汉堡包应助iwaljq采纳,获得10
15分钟前
16分钟前
16分钟前
iwaljq发布了新的文献求助10
16分钟前
ww完成签到,获得积分10
18分钟前
18分钟前
fengfenghao完成签到 ,获得积分10
19分钟前
hnxxangel完成签到,获得积分10
21分钟前
Solomon完成签到 ,获得积分0
21分钟前
三黑猫应助iwaljq采纳,获得10
21分钟前
科研通AI2S应助iwaljq采纳,获得10
22分钟前
tranphucthinh完成签到,获得积分10
22分钟前
SolderOH完成签到,获得积分10
22分钟前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3077754
求助须知:如何正确求助?哪些是违规求助? 2730586
关于积分的说明 7513220
捐赠科研通 2378818
什么是DOI,文献DOI怎么找? 1261476
科研通“疑难数据库(出版商)”最低求助积分说明 611541
版权声明 597315