Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks

自愈水凝胶 聚合物 形状记忆聚合物 材料科学 形状记忆合金 纳米技术 化学工程 智能材料 复合材料 高分子化学 工程类
作者
Candy Löwenberg,Maria Balk,Christian Wischke,Marc Behl,Andreas Lendlein
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 723-732 被引量:287
标识
DOI:10.1021/acs.accounts.6b00584
摘要

ConspectusThe ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts.In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xi ~完成签到,获得积分10
刚刚
1秒前
1秒前
zzzzzz发布了新的文献求助10
1秒前
黑魔仙完成签到,获得积分10
2秒前
2秒前
在水一方应助DNAdamage采纳,获得10
2秒前
xx发布了新的文献求助10
3秒前
顾矜应助桑葚草莓冰淇淋采纳,获得10
3秒前
3秒前
577发布了新的文献求助10
3秒前
3秒前
卡卡西应助小杨采纳,获得20
4秒前
4秒前
5秒前
神勇从波发布了新的文献求助10
5秒前
harden9159发布了新的文献求助10
6秒前
平常映雁完成签到,获得积分10
7秒前
好运接收集成器完成签到,获得积分10
8秒前
lignin发布了新的文献求助10
8秒前
我是老大应助小羊123采纳,获得10
9秒前
zhaoyushi完成签到,获得积分10
9秒前
无花果应助libra0009采纳,获得10
9秒前
科研小白完成签到 ,获得积分10
10秒前
10秒前
brier0218发布了新的文献求助10
10秒前
10秒前
所所应助一口蛋黄苏采纳,获得10
11秒前
乘风破浪完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
财来完成签到 ,获得积分10
13秒前
所所应助刻苦的如霜采纳,获得10
14秒前
小番番er发布了新的文献求助10
15秒前
15秒前
16秒前
小羊123完成签到,获得积分20
16秒前
Yuki完成签到,获得积分10
16秒前
可爱的函函应助晨曦2011采纳,获得10
17秒前
烟花应助Qwe采纳,获得10
17秒前
Akim应助HongY采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954537
求助须知:如何正确求助?哪些是违规求助? 3500689
关于积分的说明 11100600
捐赠科研通 3231199
什么是DOI,文献DOI怎么找? 1786319
邀请新用户注册赠送积分活动 869946
科研通“疑难数据库(出版商)”最低求助积分说明 801731