Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks

自愈水凝胶 聚合物 形状记忆聚合物 材料科学 形状记忆合金 纳米技术 化学工程 智能材料 复合材料 高分子化学 工程类
作者
Candy Löwenberg,Maria Balk,Christian Wischke,Marc Behl,Andreas Lendlein
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:50 (4): 723-732 被引量:300
标识
DOI:10.1021/acs.accounts.6b00584
摘要

ConspectusThe ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts.In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叮叮完成签到 ,获得积分10
1秒前
ZiyinChen发布了新的文献求助10
1秒前
1秒前
2秒前
机灵的海莲完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
李特冷发布了新的文献求助10
5秒前
zlenetr发布了新的文献求助10
6秒前
激情的晓博完成签到,获得积分10
6秒前
CodeCraft应助catbird采纳,获得10
6秒前
chen发布了新的文献求助10
6秒前
斑鸠发布了新的文献求助20
7秒前
dudu发布了新的文献求助30
7秒前
7秒前
gu发布了新的文献求助10
8秒前
希希发布了新的文献求助10
8秒前
小石头完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助150
9秒前
ani发布了新的文献求助10
11秒前
英姑应助Sam十九采纳,获得10
12秒前
12秒前
小马甲应助莫愁采纳,获得10
13秒前
小夏发布了新的文献求助10
13秒前
眯眯眼的忆山完成签到,获得积分10
15秒前
daliu完成签到,获得积分0
16秒前
16秒前
LIJIngcan发布了新的文献求助10
17秒前
小虫虫完成签到,获得积分10
17秒前
17秒前
丘比特应助ZiyinChen采纳,获得10
17秒前
机灵的海莲关注了科研通微信公众号
18秒前
19秒前
大个应助dudu采纳,获得30
19秒前
量子星尘发布了新的文献求助150
20秒前
20秒前
WoeL.Aug.11完成签到 ,获得积分10
22秒前
源缘发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447