Predictors of Recurrent Falls in People with Parkinson’s Disease and Proposal for a Predictive Tool

帕金森病 物理医学与康复 疾病 医学 心理学 老年学 内科学
作者
Lorena Rosa S. Almeida,Guilherme T. Valença,Nádja N. Negreiros,Elen Beatriz Pinto,Jamary Oliveira‐Filho
出处
期刊:Journal of Parkinson's disease [IOS Press]
卷期号:7 (2): 313-324 被引量:24
标识
DOI:10.3233/jpd-160934
摘要

Falls are a debilitating problem for people with Parkinson's disease (PD).To compare clinical and functional characteristics of non-fallers, single and recurrent fallers (≥2 falls); to determine predictors of time to second fall; and to develop a predictive tool for identifying people with PD at different categories of falls risk.Participants (n = 229) were assessed by disease-specific, self-report and balance measures and followed up for 12 months. Area under the receiver operating characteristic curves (AUC), Kaplan-Meier curves and log-rank test were performed. Selected predictors with p < 0.10 in univariate analysis were chosen to be entered into the Cox regression model.Eighty-four (37%) participants had ≥2 falls during the follow-up. Recurrent fallers significantly differed from single fallers. The final Cox model included history of ≥2 falls in the past year (Hazard Ratio [HR] = 3.94; 95% confidence interval [CI] 2.26-6.86), motor fluctuations (HR = 1.91; 95% CI 1.12-3.26), UPDRS activities of daily living (ADL) (HR = 1.10 per 1 point increase; 95% CI 1.06-1.14) and levodopa equivalent dose (LED) (HR = 1.09 per 100 mg increase; 95% CI 1.02-1.16). A 3-predictor tool included history of ≥2 falls in the past year, motor fluctuations and UPDRS ADL >12 points (AUC = 0.84; 95% CI 0.78-0.90). By adding LED >700 mg/day and Berg balance scale ≤49 points, a 5-predictor tool was developed (AUC = 0.86; 95% CI 0.81-0.92).Two predictive tools with moderate-to-high accuracy may identify people with PD at low, medium and high risk of falling recurrently within the next year. However, future studies to address external validation are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑小七发布了新的文献求助10
刚刚
Tianxu Li完成签到,获得积分10
1秒前
1秒前
九川发布了新的文献求助10
2秒前
Lucas应助无限的隶采纳,获得10
2秒前
胡雅琴完成签到,获得积分10
2秒前
sakurai完成签到,获得积分10
3秒前
清歌扶酒关注了科研通微信公众号
3秒前
二尖瓣后叶举报ww求助涉嫌违规
3秒前
烟花应助轻松笙采纳,获得10
3秒前
沉默凡桃完成签到,获得积分10
4秒前
4秒前
luuuuuing发布了新的文献求助30
4秒前
啦啦啦完成签到,获得积分10
4秒前
小可发布了新的文献求助10
4秒前
5秒前
LKGG完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
周士乐发布了新的文献求助10
6秒前
Sunshine发布了新的文献求助10
6秒前
呼吸之野完成签到,获得积分10
7秒前
害怕的小懒虫完成签到,获得积分10
7秒前
思源应助Nefelibata采纳,获得10
8秒前
妮儿发布了新的文献求助10
8秒前
BareBear应助rosa采纳,获得10
8秒前
沉默凡桃发布了新的文献求助10
9秒前
Orange应助9℃采纳,获得10
9秒前
9秒前
一只橘子完成签到 ,获得积分10
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
西瓜发布了新的文献求助10
10秒前
Ll发布了新的文献求助10
10秒前
10秒前
wcy关注了科研通微信公众号
10秒前
11秒前
11秒前
CipherSage应助爱喝冰可乐采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759