Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles

抛光 材料科学 复合材料 化学机械平面化 表面粗糙度 薄脆饼 磨料 阳极 氧化物 聚氨酯 纳米技术 冶金 电极 化学 物理化学
作者
Junji Murata,Koushi Yodogawa,Kazuma Ban
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier]
卷期号:114: 1-7 被引量:77
标识
DOI:10.1016/j.ijmachtools.2016.11.007
摘要

A novel method for electrochemical mechanical polishing (ECMP) of the single-crystalline SiC surface, which has extremely high mechanical and chemical strength compared to conventional electronic materials, is reported. The method does not employ a polishing pad; it comprises electrochemical oxidization of the SiC surface and subsequent removal of the oxide by CeO2 from the polyurethane–CeO2 core–shell particles. The core–shell particles are used to maintain a gap between the polishing plate (cathode) and the SiC wafer (anode), which enables efficient anodic oxidation of the inert SiC surface. The core–shell particles, composed of the elastic polyurethane core covered with an abrasive layer of small and soft CeO2 particles prepared by a simple and low-cost process, can be used to obtain a smooth SiC surface without using a polishing pad. The ratio of polyurethane to CeO2 in the core–shell particles is optimized to obtain core particles that are fully covered with the shell particles without leaving excess CeO2 particles. Using the fabricated core–shell particles, the conventional CMP process is unable to remove the SiC surface without anodization. While a continuous bias during polishing produces a rough SiC surface owing to the oxide film remaining on the treated surface, as confirmed by current measurements and X-ray analysis, a periodically applied bias, whose conditions were determined by the theoretical growth rate and residual thickness of the oxide film, reduces the number of scratches, and a smooth surface with sub-nanometer roughness is obtained. The obtained value of surface roughness is in good agreement with the calculated value determined using conventional grinding theory. Compared to a conventional polishing process with a colloidal SiO2 slurry, the proposed method shows superior polishing efficiency without the need for a polishing pad. SEM observation of the core–shell particles shows that the particles have durability against the strong electric field between the electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只特立独行的朱完成签到,获得积分10
2秒前
大胆妙竹完成签到 ,获得积分10
3秒前
lll完成签到,获得积分10
3秒前
bibibi完成签到,获得积分10
3秒前
大饼哥完成签到,获得积分10
4秒前
小绵羊完成签到,获得积分20
5秒前
周晓完成签到,获得积分20
5秒前
哆啦A梦完成签到,获得积分10
10秒前
简单的晓博完成签到,获得积分10
10秒前
细心奇异果完成签到,获得积分10
10秒前
你笑的样子真好看完成签到,获得积分10
11秒前
WLL给WLL的求助进行了留言
12秒前
乐风完成签到,获得积分10
13秒前
追风者完成签到,获得积分10
13秒前
追梦人2016完成签到 ,获得积分10
16秒前
丰富的谷菱完成签到,获得积分10
16秒前
义气芷荷完成签到,获得积分10
16秒前
权_888完成签到 ,获得积分10
17秒前
SppikeFPS完成签到,获得积分10
18秒前
wenxian完成签到,获得积分10
18秒前
插线板完成签到 ,获得积分10
19秒前
呆头鹅完成签到 ,获得积分10
24秒前
熠直在发光给熠直在发光的求助进行了留言
26秒前
11完成签到 ,获得积分10
26秒前
26秒前
迷恋你的微笑完成签到,获得积分10
27秒前
ding应助physicalproblem采纳,获得50
28秒前
爆米花应助like采纳,获得10
30秒前
创不可贴给创不可贴的求助进行了留言
30秒前
真实的豆芽完成签到,获得积分10
31秒前
ningmeng完成签到,获得积分10
32秒前
勤劳的盼山给勤劳的盼山的求助进行了留言
32秒前
张硕论完成签到,获得积分10
32秒前
木香完成签到,获得积分10
32秒前
动听衬衫发布了新的文献求助10
34秒前
cmuz完成签到 ,获得积分10
35秒前
jiangnan完成签到,获得积分10
38秒前
Lsmile完成签到 ,获得积分10
41秒前
羡予完成签到 ,获得积分10
42秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465567
求助须知:如何正确求助?哪些是违规求助? 4569829
关于积分的说明 14321219
捐赠科研通 4496303
什么是DOI,文献DOI怎么找? 2463217
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427369