染色质
染色体构象捕获
基因组
领域(数学分析)
计算生物学
鉴定(生物学)
计算机科学
地标
数据挖掘
生物
人工智能
遗传学
DNA
数学
基因
增强子
植物
数学分析
基因表达
作者
Mattia Forcato,Chiara Nicoletti,Koustav Pal,Carmen Maria Livi,Francesco Ferrari,Silvio Bicciato
出处
期刊:Nature Methods
[Springer Nature]
日期:2017-06-12
卷期号:14 (7): 679-685
被引量:293
摘要
Six tools to call chromatin interactions and seven tools for topologically associating domain calling are systematically compared with real and simulated data. The strengths and weaknesses of each tool are discussed. Hi-C is a genome-wide sequencing technique used to investigate 3D chromatin conformation inside the nucleus. Computational methods are required to analyze Hi-C data and identify chromatin interactions and topologically associating domains (TADs) from genome-wide contact probability maps. We quantitatively compared the performance of 13 algorithms in their analyses of Hi-C data from six landmark studies and simulations. This comparison revealed differences in the performance of methods for chromatin interaction identification, but more comparable results for TAD detection between algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI