Predicting Severity of Disease‐Causing Variants

遗传学 突变 基因 医学遗传学 外显子组测序 外显子组 全基因组关联研究
作者
Abhishek Niroula,Mauno Vihinen
出处
期刊:Human Mutation [Wiley]
卷期号:38 (4): 357-364 被引量:24
标识
DOI:10.1002/humu.23173
摘要

Most diseases, including those of genetic origin, express a continuum of severity. Clinical interventions for numerous diseases are based on the severity of the phenotype. Predicting severity due to genetic variants could facilitate diagnosis and choice of therapy. Although computational predictions have been used as evidence for classifying the disease relevance of genetic variants, special tools for predicting disease severity in large scale are missing. Here, we manually curated a dataset containing variants leading to severe and less severe phenotypes and studied the abilities of variation impact predictors to distinguish between them. We found that these tools cannot separate the two groups of variants. Then, we developed a novel machine-learning-based method, PON-PS (http://structure.bmc.lu.se/PON-PS), for the classification of amino acid substitutions associated with benign, severe, and less severe phenotypes. We tested the method using an independent test dataset and variants in four additional proteins. For distinguishing severe and nonsevere variants, PON-PS showed an accuracy of 61% in the test dataset, which is higher than for existing tolerance prediction methods. PON-PS is the first generic tool developed for this task. The tool can be used together with other evidence for improving diagnosis and prognosis and for prioritization of preventive interventions, clinical monitoring, and molecular tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
密密麻麻蒙完成签到,获得积分10
刚刚
阔达芾完成签到 ,获得积分10
刚刚
11完成签到,获得积分20
3秒前
文艺的夏青完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
传奇3应助decademe采纳,获得10
8秒前
feige发布了新的文献求助10
8秒前
阿千完成签到 ,获得积分10
9秒前
孤僻发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
各个器官发布了新的文献求助10
14秒前
Owen应助spark317采纳,获得10
14秒前
14秒前
斯文败类应助Jenny采纳,获得30
17秒前
等等发布了新的文献求助10
19秒前
汉堡包应助卡戎529采纳,获得10
21秒前
阿文发布了新的文献求助10
21秒前
等等完成签到,获得积分20
25秒前
阿戴完成签到,获得积分10
25秒前
26秒前
弄香发布了新的文献求助10
26秒前
青衫莫冷完成签到,获得积分10
27秒前
cabbage008发布了新的文献求助10
29秒前
华仔应助孤僻采纳,获得10
31秒前
冷静冰双发布了新的文献求助10
33秒前
33秒前
白夜完成签到 ,获得积分10
33秒前
Henry完成签到,获得积分10
34秒前
追风的人偶完成签到 ,获得积分10
35秒前
想不想完成签到 ,获得积分10
35秒前
cabbage008完成签到,获得积分10
35秒前
弄香完成签到,获得积分10
35秒前
科研谢啦发布了新的文献求助10
35秒前
木_1123发布了新的文献求助10
37秒前
各个器官完成签到,获得积分10
37秒前
首席医官完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138583
求助须知:如何正确求助?哪些是违规求助? 2789532
关于积分的说明 7791599
捐赠科研通 2445937
什么是DOI,文献DOI怎么找? 1300750
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079