Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning

概率分布 数学 不变(物理) 力矩(物理) 计算机科学 算法 模式识别(心理学) 人工智能 应用数学 数学物理 经典力学 统计 物理
作者
Werner Zellinger,Thomas Grubinger,Edwin Lughofer,Thomas Natschläger,Susanne Saminger‐Platz
出处
期刊:Cornell University - arXiv 被引量:79
摘要

The learning of domain-invariant representations in the context of domain adaptation with neural networks is considered. We propose a new regularization method that minimizes the discrepancy between domain-specific latent feature representations directly in the hidden activation space. Although some standard distribution matching approaches exist that can be interpreted as the matching of weighted sums of moments, e.g. Maximum Mean Discrepancy (MMD), an explicit order-wise matching of higher order moments has not been considered before. We propose to match the higher order central moments of probability distributions by means of order-wise moment differences. Our model does not require computationally expensive distance and kernel matrix computations. We utilize the equivalent representation of probability distributions by moment sequences to define a new distance function, called Central Moment Discrepancy (CMD). We prove that CMD is a metric on the set of probability distributions on a compact interval. We further prove that convergence of probability distributions on compact intervals w.r.t. the new metric implies convergence in distribution of the respective random variables. We test our approach on two different benchmark data sets for object recognition (Office) and sentiment analysis of product reviews (Amazon reviews). CMD achieves a new state-of-the-art performance on most domain adaptation tasks of Office and outperforms networks trained with MMD, Variational Fair Autoencoders and Domain Adversarial Neural Networks on Amazon reviews. In addition, a post-hoc parameter sensitivity analysis shows that the new approach is stable w.r.t. parameter changes in a certain interval. The source code of the experiments is publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助WD采纳,获得10
3秒前
Shenxh完成签到,获得积分10
3秒前
无糖去冰不要辣完成签到,获得积分10
3秒前
tomorrow完成签到 ,获得积分10
3秒前
Azhaozihao发布了新的文献求助10
4秒前
4秒前
5秒前
领导范儿应助淡定的安白采纳,获得10
5秒前
NexusExplorer应助兴奋的铸海采纳,获得50
5秒前
花信风发布了新的文献求助10
5秒前
5秒前
6秒前
劲秉应助Xxxxxxx采纳,获得10
6秒前
8秒前
9秒前
9秒前
华仔应助会飞的野马采纳,获得10
9秒前
9秒前
LONG发布了新的文献求助10
10秒前
10秒前
打打应助花信风采纳,获得10
11秒前
香蕉青烟完成签到,获得积分20
11秒前
ZMM完成签到,获得积分10
11秒前
12秒前
bb011发布了新的文献求助30
12秒前
13秒前
ZMM发布了新的文献求助30
15秒前
Lucas应助飞先生采纳,获得10
15秒前
泡泡甜筒发布了新的文献求助10
16秒前
16秒前
精明的丹云完成签到,获得积分20
17秒前
future完成签到 ,获得积分10
17秒前
19秒前
19秒前
ao123发布了新的文献求助10
19秒前
陈荣完成签到,获得积分10
19秒前
19秒前
20秒前
犹豫嚣完成签到,获得积分10
20秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3703934
求助须知:如何正确求助?哪些是违规求助? 3253550
关于积分的说明 9884349
捐赠科研通 2965471
什么是DOI,文献DOI怎么找? 1626339
邀请新用户注册赠送积分活动 770654
科研通“疑难数据库(出版商)”最低求助积分说明 743000