亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differential Expression of c-Kit Identifies Hematopoietic Stem Cells with Variable Self-Renewal Potential.

造血 干细胞 生物 骨髓 干细胞因子 移植 流式细胞术 细胞生物学 川地34 免疫学 分子生物学 造血干细胞 男科 内科学 医学
作者
Joseph Shin,Wenhuo Hu,Christopher Y. Park
出处
期刊:Blood [American Society of Hematology]
卷期号:120 (21): 2325-2325
标识
DOI:10.1182/blood.v120.21.2325.2325
摘要

Abstract Abstract 2325 Hematopoietic stem cells (HSC) can be identified on the basis of differential cell surface protein expression, such that 10 out of 13 purified HSC (Lin−c-Kit+Sca-1+CD150+CD34−FLK2−) exhibit long-term reconstitution potential in single-cell transplants. HSCs express c-Kit, and interactions between c-Kit and its ligand, stem cell factor, have been shown to be critical for HSC self-renewal; however, HSCs express a log-fold variation in c-Kit levels. We hypothesized that differing levels of c-Kit expression on HSCs may identify functionally distinct classes of HSCs. Thus, we measured the function and cellular characteristics of c-Kithi HSCs and c-Kitlo HSCs (defined as the top 30% and bottom 30% of c-Kit expressors, respectively), including colony formation, cell cycle status, lineage fates, and serial engraftment potential. In methylcellulose colony assays, c-Kithi HSCs formed 5-fold more colonies than c-Kitlo HSCs (P=0.01), as well as 4-fold more megakaryocyte colonies in vitro. c-Kithi HSC were 2.4-fold enriched for cycling cells (G2-S-M) in comparison to c-Kitlo HSC as assessed by flow cytometry in vivo (15.4% versus 6.4%, P=0.001). Lethally irradiated mice competitively transplanted with 400 c-Kitlo HSCs and 300,000 competitor bone marrow cells exhibited increasing levels of donor chimerism, peaking at a mean of 80% peripheral blood CD45 chimerism by 16 weeks post-transplantation, whereas mice transplanted with c-Kithi HSCs reached a mean of 20% chimerism (p<0.00015). Evaluation of the bone marrow revealed an increase in HSC chimerism from 23% to 44% in mice injected with c-Kitlo HSCs from weeks 7 to 18, while HSC chimerism decreased from 18% to 3.0% in c-Kithi HSC-transplanted mice (P<0.00021). Levels of myeloid chimerism in the bone marrow and peripheral blood were not significantly different during the first 4 weeks following transplantation between mice transplanted with c-Kithi or c-Kitlo HSCs, and evaluation of HSC bone marrow lodging at 24 hours post-transplantation demonstrated no difference in the number of c-Kithi and c-Kitlo HSCs, indicating that differential homing is not the reason for the observed differences in long-term engraftment. Donor HSCs purified from mice transplanted with c-Kithi HSC maintained higher levels of c-Kit expression compared to those from mice injected with c-Kitlo HSC by week 18 post-transplantation (P=0.01). Secondary recipients serially transplanted with c-Kithi HSC exhibited a chimerism level of 40% to 3% from week 4 to 8 post-secondary transplant, whereas chimerism levels remained at 6% in mice injected with c-Kitlo HSC. These results indicate that c-Kithi HSCs exhibit reduced self-renewal capacity compared with c-Kitlo HSCs, and that the differences in c-Kithi and c-Kitlo HSC function are cell-intrinsic. Analysis of transplanted HSC fates revealed that c-Kithi HSCs produced two-fold more pre-megakaryocyte-erythroid progenitors and pluriploid megakaryocytes compared to their c-Kitlo counterparts in vivo, suggesting a megakaryocytic lineage bias in c-Kithi HSC. Consistent with this finding, the transplanted c-Kithi HSC gave rise to 10-fold more platelets and reached a maximum platelet output two days earlier than c-Kitlo HSC. To determine the potential mechanisms underlying the transition from c-Kitlo to c-Kithi HSCs, we assessed the activity of c-Cbl, an E3 ubiquitin ligase known to negatively regulate surface c-Kit expression in a Src-dependent manner. Flow cytometric analysis revealed 6-fold more activated c-Cbl in freshly purified c-Kitlo HSC compared to c-Kithi HSC (P=0.02), suggesting that functional loss of c-Cbl increases c-Kit expression on c-Kitlo HSCs. Mice treated for nine days with Src inhibitors, which inhibit c-Cbl activity, experienced a 1.5-fold and 2-fold increase in the absolute number of c-Kithi HSCs (P=0.067) and megakaryocyte progenitors (P=0.002), respectively. Thus, c-Cbl loss likely promotes the generation of c-Kithi HSCs. In summary, differential expression of c-Kit identifies HSC with distinct functional attributes with c-Kithi HSC exhibiting increased cell cycling, megakaryocyte lineage bias, decreased self-renewal capacity, and decreased c-Cbl activity. Since c-Kitlo HSC represent a population of cells enriched for long-term self-renewal capacity, characterization of this cell population provides an opportunity to better understand the mechanisms that regulate HSC function. Disclosures: No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯迎南完成签到,获得积分20
8秒前
15秒前
林非鹿完成签到,获得积分10
18秒前
樊伟诚发布了新的文献求助10
32秒前
FashionBoy应助HuiHui采纳,获得10
47秒前
科研通AI2S应助oleskarabach采纳,获得10
48秒前
1分钟前
www发布了新的文献求助10
1分钟前
林孟倾完成签到,获得积分10
2分钟前
2分钟前
HuiHui发布了新的文献求助10
2分钟前
科研通AI2S应助puzhongjiMiQ采纳,获得10
2分钟前
英俊的铭应助puzhongjiMiQ采纳,获得10
2分钟前
香蕉觅云应助puzhongjiMiQ采纳,获得10
2分钟前
烟消云散完成签到,获得积分10
3分钟前
CaoJing完成签到 ,获得积分10
4分钟前
bkagyin应助吴可之采纳,获得10
5分钟前
6分钟前
完美世界应助科研通管家采纳,获得10
7分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
Lucas应助科研通管家采纳,获得10
9分钟前
9分钟前
9分钟前
wtsow完成签到,获得积分0
10分钟前
Jenlisa完成签到 ,获得积分10
10分钟前
烨枫晨曦完成签到,获得积分10
11分钟前
小二郎应助科研通管家采纳,获得10
11分钟前
下雨天完成签到 ,获得积分10
11分钟前
科目三应助一杯美式采纳,获得10
12分钟前
12分钟前
一杯美式发布了新的文献求助10
12分钟前
老王家的二姑娘完成签到 ,获得积分10
12分钟前
葱饼完成签到 ,获得积分10
14分钟前
慕青应助科研通管家采纳,获得10
17分钟前
完美世界应助泓凯骏采纳,获得10
17分钟前
17分钟前
17分钟前
泓凯骏发布了新的文献求助10
17分钟前
igaku发布了新的文献求助10
17分钟前
igaku完成签到,获得积分10
17分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784179
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997